Workshop on almost hermitian and contact geometry

Będlewo – October 2015

Killing spinors with torsion parallel under the characteristic connection

(arXiv:1509.08449)

Ioannis Chrysikos

Masaryk University – Department of Mathematics and Statistics

Plan of the talk: We will speak about twistor and Killing spinors with respect to a metric connection with (totally) skew-symmetric torsion $0 \neq T \in \Lambda^3(T^*M)$.

• Twistor spinors: Were introduced by R. Penrose and his collaborators, in General Relativity as solutions of a conformal invariant spinorial field equation (twistor equation).

• During 80s: Systematic investigation of twistor spinors from the view point of conformal geometry (Baum, Lichnerowicz, Friedrich).

• Why twistor spinors with *torsion*?

(eigenvalue estimates of D by a twistor operator) [Agricola-Becker-B.-Kim'12]

$$\not\!\!\!D = D^g + \frac{1}{4}T.$$

Dirac operator and twistor operator

• Let (M^n,g) be connected oriented Riemannian spin manifold, Σ the spinor bundle.

$$\Sigma$$
)

P. Dirac (1902–1984)

$$D^g(\varphi) = \sum_i e_i \cdot \nabla^g_{e_i} \varphi$$

 \rightarrow Penrose or twistor operator

$$P^g := p \circ \nabla^g : \Gamma(\Sigma) \xrightarrow{\nabla^g} \Gamma(TM \otimes \Sigma) \xrightarrow{p} \Gamma(\ker \mu)$$

 $p:TM\otimes\Sigma\to \ker\mu\subset TM\otimes\Sigma$ the orthogonal projection onto the kernel of the Clifford multiplication.

Locally $p(X \otimes \varphi) = X \otimes \varphi + \frac{1}{n} \sum_{i=1}^{n} e_i \otimes e_i \cdot X \cdot \varphi$, thus

$$P^{g}(\varphi) = \sum_{i=1}^{n} e_{i} \otimes \{\nabla_{e_{i}}^{g}\varphi + \frac{1}{n}e_{i} \cdot D^{g}\varphi\}$$

Def. A spinor field $\varphi \in \Gamma(\Sigma)$ is called

Killing spinor $\Leftrightarrow \nabla^g_X \varphi = \kappa X \cdot \varphi$

twistor spinor $\Leftrightarrow \varphi \in \operatorname{Ker}(P^g) \Leftrightarrow \nabla^g_X \varphi + \frac{1}{n} X \cdot D^g(\varphi) = 0$

1) $D^g(\varphi) = -n\kappa\varphi$, so $\varphi \in \operatorname{Ker}(P^g)$ automatically.

 $\longrightarrow \varphi \in \Gamma(\Sigma)$ is a Killing spinor iff $\varphi \in \text{Ker}(P^g)$ and φ is a D^g -eigenspinor.

2) $X^{\varphi} := \sum_{i} i \langle \varphi, e_i \cdot \varphi \rangle$ Killing vector field of (M^n, g)

3) $\exists \varphi \in \mathcal{K}(M^n,g)_{\kappa} \ \kappa \in \mathbb{R} \setminus \{0\} \Rightarrow (M^n,g) \text{ compact Einstein with positive } Scal^g$,

$$\operatorname{Ric}^{g}(X) = 4(n-1)\kappa^{2}X, \quad \operatorname{Scal}^{g} = 4n(n-1)\kappa^{2}.$$

• Th. Friedrich's inequality (1980): (M^n, g) compact + spin. Then, the first eigenvalue of D^g satisfies

$$\lambda^2 \ge \frac{n}{4(n-1)} \operatorname{Scal}^g_{\min}$$

 \longrightarrow equality case: φ must be a real KS: $\nabla^g_X \varphi = \mp \frac{1}{2} \sqrt{\frac{\operatorname{Scal}^g_{\min}}{n(n-1)}} X \cdot \varphi = \kappa X \cdot \varphi.$

Elementary properties of twistor spinors

(due to H. Baum '81, A. Lichnerowicz '87-'88 and Th. Friedrich '89)

Let $\varphi \in \operatorname{Ker}(P^g)$. Then,

(1) For a conformal change
$$\tilde{g} = e^{2u}g$$
, then
 $(TM,g) \cong (TM,\tilde{g}), X \mapsto \widetilde{X} := e^{-u}X, \quad (\Sigma,g) \to (\widetilde{\Sigma},\tilde{g}), \varphi \to \widetilde{\varphi}$
 $D^{\tilde{g}} = e^{-\frac{n-1}{2}u} \circ D^g \circ e^{\frac{n-1}{2}u}, \quad P^{\tilde{g}} = e^{\frac{u}{2}} \circ P^g \circ e^{-\frac{u}{2}}$
 $\varphi \in \operatorname{Ker}(P^g) \Leftrightarrow e^{\frac{u}{2}}\widetilde{\varphi} \in \operatorname{Ker}(P^{\tilde{g}})$

(2) $(D^g)^2(\varphi) = \frac{n}{4(n-1)}\operatorname{Scal}^g \varphi.$

(3) $\nabla_X^g(D^g(\varphi)) = \frac{n}{2(n-2)} \left[-\operatorname{Ric}^g(X) + \frac{\operatorname{Scal}^g}{2(n-1)}X \right] \cdot \varphi = \frac{n}{2}\operatorname{Sch}^g(X) \cdot \varphi.$

Consequences

 $\Rightarrow \varphi \in \Gamma(\Sigma)$ is a twistor spinor iff $\varphi \oplus D^g(\varphi) \in \Gamma(E)$ is parallel with respect the covariant derivative on $E = \Sigma \oplus \Sigma$ given by

$$\nabla_X^E = \begin{pmatrix} \nabla_X^g & (1/n)X \\ \\ -\frac{n}{2}\operatorname{Sch}^g(X) & \nabla_X^g \end{pmatrix}.$$

 $\Rightarrow \text{ Any twistor spinor } \varphi \in \operatorname{Ker}(P^g) \text{ is defined by its values } \varphi(p), D^g(\varphi(p)) \text{ at some point } p \in M.$

$$\Rightarrow \dim \operatorname{Ker}(P^g) \leq 2^{\left[\frac{n}{2}\right]+1} = 2(\dim \Delta_n).$$

 \Rightarrow Zeros of $\varphi \in \text{Ker}(P^g)$ are isolated.

Generalization to metric connections with skew-torsion

• $\{\nabla^s : s \in \mathbb{R}\}$, totally skew-symmetric torsion 4sT, $T \in \wedge^3 M$:

$$g(\nabla_X^s Y, Z) = g(\nabla_X^g Y, Z) + 2sT(X, Y, Z), \quad s \in \mathbb{R}$$

Special members:

- $s = 0 \longrightarrow$ L-C connection $(T \equiv 0)$
- $s = 1/4 \longrightarrow \nabla^{1/4} \equiv \nabla^c := \nabla^g + \frac{1}{2}T$ (characteristic connection)
- GENERAL STRATEGY: Given a G-structure ($G \subsetneq SO(n)$) replace the L-C connection ∇^g with a metric connection preserving the G-structure.

 \implies If the torsion form $T \in \Lambda^3(T^*M)$ (\Leftrightarrow same geodesics with ∇^g), then we get the characteristic connection ∇^c :

$$g(\nabla_X^c Y, Z) = g(\nabla_X^g Y, Z) + \frac{1}{2}T(X, Y, Z).$$

- If G is contained in the stabiliser of a generic spinor field then \exists a ∇^c -parallel spinor: $\nabla^c \varphi = 0$
 - $n = 5 \Rightarrow G = SU(2)$
 - $n = 6 \Rightarrow G = SU(3)$
 - $n = 7 \Rightarrow G = G_2$
 - $n = 8 \Rightarrow G = \text{Spin}(7)$

The lift of ∇^s and ∇^c into Σ :

$$\nabla^s_X \varphi = \nabla^g_X \varphi + s(X \lrcorner T) \cdot \varphi, \quad \nabla^c_X \varphi = \nabla^g_X \varphi + \frac{1}{4} (X \lrcorner T) \cdot \varphi.$$

•
$$D^s = \mu \circ \nabla^s \left[D^s(\varphi) = \sum_i e_i \cdot \nabla^s_{e_i} \varphi = D^g(\varphi) + 3sT \cdot \varphi \right]$$

•
$$P^s = p \circ \nabla^s \left[P^s(\varphi) = \sum_{i=1}^n e_i \otimes \{ \nabla_{e_i}^s \varphi + \frac{1}{n} e_i \cdot D^s \varphi \} \right]$$

Def. [Agricola-Becker-Bender-Kim'12], [Agricola-Höll'13] Killing spinor with torsion (KsT) $\Leftrightarrow \nabla_X^s \varphi = \zeta X \cdot \varphi$, for some $\zeta \in \mathbb{R} \setminus \{0\}$ and $s \in \mathbb{R} \setminus \{0\}$. Twistor spinor with torsion (TsT) $\Leftrightarrow \varphi \in \text{Ker}(P^s)$ for some $s \neq 0 \Leftrightarrow$

$$\nabla_X^s \varphi + \frac{1}{n} X \cdot D^s(\varphi) = 0.$$

The interest in TsT and in some special cases KsT is due to the fact that they realize (under the condition $\nabla^c T = 0$) the equality case for eigenvalue estimates of the **cubic Dirac operator** [Agricola-Becker-B.-Kim'12]

i.e. the Dirac operator associated to the connection with torsion T/3.

From now on we assume (M^n, g, T) : $\nabla^c T = 0$. Consequences

•
$$dT = 2\sigma_T$$
 where $\sigma_T = \frac{1}{2} \sum_i (e_i \sqcup T) \land (e_i \sqcup T)$.
• $\delta^s T = 0 \forall s \in \mathbb{R} \Rightarrow \boxed{\operatorname{Ric}^s = \operatorname{Ric}^g - 4s^2 S}$ $S(X, Y) = \sum_i g(T(X, e_i), T(Y, e_i))$
 $\rightarrow \quad \mathsf{Set:} \quad \boxed{\mathcal{D}^s(\varphi) := \sum_i (e_i \sqcup T) \cdot \nabla_{e_i}^s \varphi}.$

(Generalized) Schröndinger-Lichnerowicz formulas

$$\begin{split} (D^g)^2 &= \Delta^g + \frac{1}{4}\operatorname{Scal}^g, & [\operatorname{Scrönd.'62}], [\operatorname{Lichn.'63}] \\ D^2 &= \Delta^{1/4} + \frac{1}{4}\operatorname{Scal}^g + \frac{1}{4}dT - \frac{1}{8}\|T\|^2 & [\operatorname{Bis.'89}], [\operatorname{Ko.'99}], [\operatorname{I.-D.'00}], [\operatorname{Agric.'02}] \\ &= \Delta^{1/4} + \frac{1}{4}\operatorname{Scal}^g - \frac{1}{4}T^2 + \frac{1}{8}\|T\|^2 \\ (D^c)^2 &= \Delta^{1/4} + \frac{1}{2}dT - \mathcal{D}^{1/4} + \frac{1}{4}\operatorname{Scal}^c & [\operatorname{Friedr.-lv.'01}], [\operatorname{Agric.'02}] \\ (D^s)^2 &= \Delta^s + s(3 - 4s)dT - 4s\mathcal{D}^s + \frac{1}{4}\operatorname{Scal}^c & [\operatorname{F.-lv.'01}], [\operatorname{Agric.'02}], [\operatorname{A.-F.'03}] \\ (D^{s/3})^2 &= \Delta^s - sT^2 + \frac{1}{4}\operatorname{Scal}^g + (s - 2s^2)\|T\|^2 & [\operatorname{F.-lv.'01}], [\operatorname{A.-Friedr.'03}] \end{split}$$

The anticommutator of
$$D^s$$
 and T (in the case $\nabla^c T = 0$)

 $D^{s} \cdot T + T \cdot D^{s} = (1 - 4s)dT - 2\mathcal{D}^{s} \Rightarrow D^{c} \cdot T + T \cdot D^{c} = -2\mathcal{D}^{s} \quad [\text{Friedr.-lv.'01}]$

$$(D^{s/3})^2 \cdot T = T \cdot (D^{s/3})^2 \Rightarrow \quad \not D^2 \cdot T = T \cdot \not D^2 \qquad [Agric.-Friedr.'03]$$

• Σ decomposes into a direct sum of T-eigenbundles preserved by ∇^c : [Agric.-Friedr.'03]

$$\Sigma = \bigoplus_{\gamma \in \operatorname{Spec}(T)} \Sigma_{\gamma}, \quad \nabla^{c} \Sigma_{\gamma} \subset \Sigma_{\gamma}, \; \forall \gamma \in \operatorname{Spec}(T), \quad \Gamma(\Sigma) = \bigoplus_{\gamma \in \operatorname{Spec}(T)} \Gamma(\Sigma_{\gamma})$$

Universal estimate
$$\boxed{\lambda_{1}(\not{D}^{2}|_{\Sigma_{\gamma}}) \ge \frac{1}{4}\operatorname{Scal}_{\min}^{g} + \frac{1}{8}||T||^{2} - \frac{1}{4}\gamma^{2} := \beta_{\operatorname{univ}}(\gamma)}$$

- equality case: iff φ is ∇^c -parallel and Scal^g = constant.
- Twistorial estimate [Agric.-Becker-B.-Kim'12].

$$\lambda_1(\not\!\!D^2|_{\Sigma\gamma}) \ge \frac{n}{4(n-1)} \operatorname{Scal}^g_{\min} + \frac{n(n-5)}{8(n-3)^2} ||T||^2 + \frac{n(4-n)}{4(n-3)^2} \gamma^2 := \beta_{\mathrm{tw}}(\gamma)$$

• equality case: iff φ is TsT for s = (n-1)/4(n-3) and $\operatorname{Scal}^g = \operatorname{constant}$.

Twistor spinors with torsion

Lem.1 [Chr-2015] For any twistor spinor $\varphi \in \text{Ker}(P^s)$ and for any vector field X the following relations hold:

$$-\frac{1}{2}\operatorname{Ric}^{s}(X) \cdot \varphi = -\frac{8s}{n}(X \lrcorner T) \cdot D^{s}(\varphi) + \frac{n-2}{n}\nabla_{X}^{s}(D^{s}(\varphi)) -\frac{1}{n}X \cdot (D^{s})^{2}(\varphi) - s(3-4s)(X \lrcorner \sigma_{T}) \cdot \varphi. \frac{1}{2}\operatorname{Scal}^{s}\varphi = -\frac{24s}{n}T \cdot D^{s}(\varphi) + \frac{2(n-1)}{n}(D^{s})^{2}(\varphi) -4s(3-4s)\sigma_{T} \cdot \varphi.$$

Hints: [Becker-Bender's PhD '12], [Agric.-Becker-B.-Kim '12] (s = 1/4)

$$\sum_{i} e_i \cdot R^s(X, e_i)\varphi = -\frac{1}{2}\operatorname{Ric}^s(X) \cdot \varphi + s(3 - 4s)(X \lrcorner \sigma_T) \cdot \varphi.$$

 \underline{Remark} : For a TsT $\varphi \in \mathrm{Ker}(P^s)$ it holds that

$$\mathcal{D}^{s}(\varphi) = -\frac{3}{n}T \cdot D^{s}(\varphi), \quad \Delta^{s}(\varphi) = \frac{1}{n}(D^{s})^{2}(\varphi)$$

...Lemma 1 implies that

$$\nabla_X^s (D^s(\varphi)) = \frac{n}{2} \operatorname{Sch}^s(X) \cdot \varphi + \frac{sn}{(n-1)(n-2)} \Big[\Big(\frac{8(n-1)}{n} (X \lrcorner T) \\ + \frac{12}{n} X \cdot T \Big) \cdot \Big(D^s(\varphi) \Big] + (3-4s) (X \cdot dT + (n-1)(X \lrcorner \sigma_T)) \cdot \varphi \Big].$$

Lem.2 The mapping $\nabla^{s,E}: \Gamma(E) \to \Gamma(T^*M \otimes E)$ given by

$$\nabla_X^{s,E}(\Phi) = \left(\nabla_X^s \varphi_1 + \frac{1}{n} X \cdot \varphi_2\right) \oplus \left(-\frac{n}{2} \operatorname{Sch}^s(X) \cdot \varphi_1 - \frac{sn(3-4s)}{(n-1)(n-2)} \left[X \cdot dT + (n-1)(X \lrcorner \sigma_T)\right] \cdot \varphi_1 - \frac{sn}{(n-1)(n-2)} \left[\frac{8(n-1)}{n} (X \lrcorner T) + \frac{12}{n} X \cdot T\right] \cdot \left(\varphi_2\right) + \nabla_X^s \varphi_2\right),$$

where $X \in \Gamma(TM)$ and $\Phi := \varphi_1 \oplus \varphi_2 \in \Gamma(\Sigma \oplus \Sigma)$, defines a covariant derivative on the vector bundle $E = \Sigma \oplus \Sigma$.

• Special member: $s = 0 \longrightarrow \nabla^{0,E} \equiv \nabla^{E}$.

Thm.1 [Chr'15] Let (M^n, g, T) $(n \ge 3)$ a connected Riemannian spin manifold with $\nabla^c T = 0$. Then, any twistor spinor with torsion $\varphi \in \text{Ker}(P^s)$ satisfies the equation

$$\nabla_X^{s,E}(\varphi \oplus D^s(\varphi)) = 0.$$

Conversely, if $(\varphi \oplus \psi) \in \Gamma(E)$ is $\nabla^{s,E}$ -parallel, then φ is a twistor spinor with torsion such that $D^{s}(\varphi) = \psi$.

Cor. Let (M^n, g, T) $(n \ge 3)$ a connected Riemannian spin manifold with $\nabla^c T = 0$. Then,

a) dim Ker $(P^s) \leqslant 2^{\left[\frac{n}{2}\right]+1} = 2(\dim \Delta_n).$

b) If φ and $D^s(\varphi)$ vanish at some point $p \in M$ and $\varphi \in \text{Ker}(P^s)$, then $\varphi \equiv 0$.

Prop.1 [Chr.'15] Let (M^n, g, T) $(n \ge 3)$ be a connected Riemannian spin manifold with $\nabla^c T = 0$. Then, any zero point of $0 \ne \varphi \in \text{Ker}(P^s)$ is isolated, i.e. the zero-set of φ is discrete.

Hints: Compute the Hessian $\operatorname{Hess}^{\nabla^s}$ of the function $|\varphi|^2$ in $p \in M$.

$$\operatorname{Hess}_{p}^{\nabla^{s}}(|\varphi|^{2})(X,Y) = \frac{2}{n^{2}} \Big[(Y \cdot D^{s}(\varphi), X \cdot D^{s}(\varphi)) \Big]_{p} = \frac{2}{n^{2}} (|D^{s}(\varphi)|^{2})_{p} g_{p}(X,Y).$$

• So, if $(D^s(\varphi))_p \neq 0$, then p is a non-degenerate critical point of $|\varphi|^2$ and thus an isolated zero point of φ . If $(D^s(\varphi))_p = 0$, then φ must be trivial.

 $\underline{\nabla^c}\text{-parallel spinors and characteristic spinors}$

- ∇^c -parallel spinor: $\nabla^c \varphi = 0$
- characteristic, or $abla^c$ -harmonic spinor: $D^c(arphi)=0$

<u>Known results</u> (1) [Friedr.-lv.'01] Let $\varphi_0 \in \text{Ker}(\nabla^c)$. Then,

$$\operatorname{Scal}^{c} \varphi_{0} = -2dT \cdot \varphi_{0} = -4\sigma_{T} \cdot \varphi_{0}, \quad (*)$$

$$\operatorname{Ric}^{c}(X) \cdot \varphi_{0} = \frac{1}{2} (X \lrcorner dT + \nabla_{X}^{c}T) \cdot \varphi_{0}.$$

(2) The scalar curvatures $\text{Scal}^c, \text{Scal}^g$ are constant. If in addition $\varphi \in \Sigma_{\gamma}$ for some $\gamma \neq 0$, i.e. $T \cdot \varphi = \gamma \varphi, \Rightarrow$

$$\operatorname{Scal}^{g} = 2\gamma^{2} - \frac{1}{2} \|T\|^{2}, \quad \operatorname{Scal}^{c} = 2(\gamma^{2} - \|T\|^{2}), \quad \operatorname{Ric}^{c}(X) = \frac{1}{2} (X \lrcorner dT) \cdot \varphi_{0} = (X \lrcorner \sigma_{T}) \cdot \varphi_{0}.$$

(3) In the presence of a ∇^c -parallel spinor $\varphi \in \Sigma_{\gamma}$ [Agric.-Becker-B.-Kim. '12]

$$\beta_{\rm tw}(\gamma) \leqslant \beta_{\rm univ}(\gamma).$$

For $n \leq 8$ [Agric.-Becker-B.-Kim. '12]

$$0 \leq 2n ||T||^2 + (n-9)\gamma^2$$
, $\operatorname{Scal}^g \leq \frac{9(n-1)}{2(9-n)} ||T||^2$.

• equality case: iff **universal estimate** coincides with **twistorial estimate**.

• It is an interesting question to check if these twistor spinors with torsion are also some **kind** of *Killing spinors* and what the geometric inclusions are when the two estimates coincide, if any.

 \implies In general, the twistor equation with torsion cannot be reduced to a Killing spinor equation

- Do there exist exceptions? YES!
- $n = 3 \Rightarrow (S^3, g_{can})$ (new)
- $n = 6 \Rightarrow$ nearly Kähler mnfds. [Agric.-Becker-B.-Kim. '12]
- $n = 7 \Rightarrow$ nearly parallel G₂-mnfds. (new)

Prop.2 [Chr.'15] Let (M^n, g, ∇^c) be a compact connected Riemannian spin manifold with $\nabla^c T = 0$ and positive scalar curvature, carrying a non-trivial spinor field $0 \neq \varphi_0 \in \Gamma(\Sigma)$ such that

$$\nabla^c \varphi_0 = 0, \quad T \cdot \varphi_0 = \gamma \varphi_0.$$

Then, φ_0 is a real Killing spinor (with respect to g) if and only if

$$\gamma^2 = \frac{4n}{9(n-1)} \operatorname{Scal}^g. \quad (\dagger)$$

If this is the case, then the Killing number is given by $\kappa:=3\gamma/4n$ and

$$(X \lrcorner T) \cdot \varphi_0 + \frac{3\gamma}{n} X \cdot \varphi_0 = 0, \quad \forall \ X \in \Gamma(TM).$$

• For $n \leq 8$, the condition (†) is equivalent to

$$\gamma^2 = \frac{2n}{9-n} ||T||^2$$
, or $\operatorname{Scal}^g = \frac{9(n-1)}{2(9-n)} ||T||^2$

If this is the case, then $dT \cdot \varphi_0 = -\frac{3\gamma^2(n-3)}{2n}\varphi_0$.

Hints: (1) Since

$$D^c \equiv D^{1/4} = D^g + \frac{3}{4}T$$

and $\varphi_0 \in \Sigma_\gamma$ is ∇^c -parallel, it follows that φ_0 is an eigenspinor of the Riemannian Dirac operator D^g

$$D^g(\varphi_0) = -\frac{3\gamma}{4}\varphi_0.$$

(2) [Friedrich '80] Given a compact Riemannian spin manifold with positive scalar curvature, if $\varphi_0 \in \Gamma(\Sigma)$ is an eigenspinor of D^g with one of the eigenvalues

$$\pm \frac{1}{2} \sqrt{\frac{n \operatorname{Scal}_{\min}^g}{n-1}},$$

then φ_0 is a real Killing spinor with corresponding Killing number

$$\kappa := \mp \frac{1}{2} \sqrt{\frac{\operatorname{Scal}_{\min}^g}{n(n-1)}}.$$

(3) Since $\varphi \in \operatorname{Ker}(\nabla^c) := \{\varphi \in \Gamma(\Sigma_{\gamma}) \subset \Gamma(\Sigma) : \nabla^c \varphi = 0\}$, Scal^g is constant

Cor. Let $\varphi \in \operatorname{Ker}(\nabla^c)$. If $\beta_{\operatorname{univ}}(\gamma) = \beta_{\operatorname{tw}}(\gamma)$, then φ is a **real Killing spinor**, in particular $\varphi \in \mathcal{K}(M^n, g)_{\frac{3\gamma}{4n}} \cap \Gamma(\Sigma_{\gamma})$.

Question: What about the converse? **YES**

Observe that on a compact connected Riemannian spin manifold (M^n, g, T) with positive scalar curvature

_____//______//______

- real Killing spinors with Killing number $\kappa = \frac{3\gamma}{4n}$,
- ∇^c -parallel spinors lying in Σ_{γ} , or
- characteristic spinors lying in Σ_{γ} ,

if existent, they are sharing a common property:

They are all eigenspinors of the Riemannian Dirac operator with the same eigenvalue $-\frac{3\gamma}{4} \neq 0$, where $0 \neq \gamma \in \text{Spec}(T)$ is a *T*-eigenvalue.

Examples.

(1) 6-dimensional nearly Kähler manifolds

[Gray'70], [Friedr.-Grunewald '86], [Friedr.-Ivanov.'01]

Consider a 6-dimensional NEARLY KÄHLER MANIFOLD, i.e. an almost Hermitan manifold (M^6,g,J) such that

$$(\nabla_X^g J)X = 0.$$

• There exists unique characteristic connection ∇^c with parallel skew-torsion, given by

$$T(X,Y) := (\nabla_X^g J)JY.$$

 \longrightarrow There exist two ∇^c -parallel spinors φ^{\pm} lying in Σ_{γ} with $\gamma = \pm 2 \|T\|$.

• Both are real Killing spinors with Killing number given by $\kappa := \pm ||T||/4$. Indeed,

$$\operatorname{Ric}^{g} = \frac{5}{4} \|T\|^{2}, \quad \operatorname{Scal}^{g} = \frac{15}{2} \|T\|^{2}$$

Notice that Scal^g coincides with $\frac{9(n-1)}{4n}\gamma^2 = \frac{9(n-1)}{2(9-n)}||T||^2$. Thus, the spinors φ^{\pm} must be real Killing spinors with $\kappa = 3\gamma/4n = \pm ||T||/4$. In particular, $dT \cdot \varphi^{\pm} = -\frac{1}{2}\operatorname{Scal}^c \cdot \varphi^{\pm} = -\frac{3\gamma^2(n-3)}{2n}\varphi^{\pm}$, i.e. $dT \cdot \varphi^{\pm} = -3||T||^2\varphi^{\pm}$.

(2) Nearly parallel G_2 -manifolds

[Fr.-Kath.-Mor.-Sem.'97], [Friedr.-lv.'01]

• G_2 14-dimensional compact simple Lie group can be viewed as;

 \Longrightarrow the stabiliser of a generic 3-form $\omega \in \wedge^3(\mathbb{R}^7)$

 $\omega := e_{127} + e_{135} - e_{146} - e_{236} - e_{245} - e_{347} + e_{567}.$ $\implies \text{ or the subgroup of } \text{Spin}(7) \text{ preserving the unit spinor } \psi_0 = (1, 0, \dots, 0)^t \in \text{S}(\Delta_7) \subset \Delta_7 := \mathbb{R}^8$ $\text{G}_2 = \{A \in \text{GL}_n \mathbb{R} : \omega = A^* \omega\} = \{g \in \text{Spin}(7) : g\psi_0 = \psi_0\}.$

• Under the action of
$$G_2$$
,

$$\underline{\Delta_7 = \mathbb{R}\psi_0 \oplus \{X \cdot \psi_0 : X \in \mathbb{R}^7\}}.$$

In particular ω and ψ_0 induce equivalent data:

$$\omega(X, Y, Z) = \langle X \cdot Y \cdot Z \cdot \psi_0, \psi_0 \rangle.$$

Def. A G₂-structure on M^7 is a G₂-reduction of the frame bundle SO (TM^7) .

Def. A G₂-structure on M^7 is said to be NEARLY PARALLEL if the associated spinor φ is a real Killing spinor. This is equivalent to say that $d\omega = -\tau_0 * \omega$ for some real constant $\tau_0 \neq 0$.

• \exists ! characteristic connection ∇^c with parallel skew-torsion T given by

$$T := \frac{1}{6} (d\omega, *\omega) \cdot \omega = -\frac{\tau_0}{6} \omega, \quad ||T||^2 = \frac{7}{36} \tau_0^2,$$

 \longrightarrow There is a unique ∇^c -parallel spinor φ_0 with $\gamma = -\sqrt{7} \|T\|$. [Friedrich-Ivanov '01]

• φ_0 is a real Killing spinor with $\kappa = -\frac{3}{4\sqrt{7}} \|T\|$.

$$\operatorname{Ric}^{g} = \frac{27}{14} \|T\|^{2} \operatorname{Id}, \quad \operatorname{Scal}^{g} = \frac{27}{2} \|T\|^{2}$$

Indeed, Scal^g coincides with $\frac{9(n-1)}{4n}\gamma^2 = \frac{9(n-1)}{2(9-n)}||T||^2$. Thus, φ_0 must be a Killing spinor with $\kappa = 3\gamma/4n = -\frac{3}{4\sqrt{7}}||T||$. In particular, $dT \cdot \varphi_0 = -\frac{3\gamma^2(n-3)}{2n}\varphi_0$, i.e. $dT \cdot \varphi_0 = -6||T||^2\varphi_0$.

Lem.3 Let $0 \neq \gamma \in \operatorname{Spec}(T)$ be a real non-zero T-eigenvalue. Then, a real Killing spinor $\varphi \in \mathcal{K}(M^n, g)_{\frac{3\gamma}{4n}}$ is characteristic i.e. $D^c(\varphi) = 0$, iff $\varphi \in \Sigma_{\gamma}$.

Hints: $D^{c}(\varphi) = D^{g}(\varphi) + \frac{3}{4}T \cdot \varphi = -\frac{3\gamma}{4}\varphi + \frac{3}{4}T \cdot \varphi$.

- One cannot claim that a Killing spinor with $\kappa = 3\gamma/4n$ is ∇^c -parallel, even if it is characteristic.
- With the aim to construct the desired *one-to-one correspondence* between spinor fields in $Ker(\nabla^c)$ and

$$\operatorname{Ker}(D^c) := \{ \varphi \in \Gamma(\Sigma_{\gamma}) \subset \Gamma(\Sigma) : D^c(\varphi) = 0 \},\$$

the eigenvalues of the endomorphism $\left| dT + \frac{1}{2} \operatorname{Scal}^{c} \right|$ on Σ must be **non-negative** [Friedr.-lv.'01].

Thm.2 [Chr.'15] Let (M^n, g, T) be compact connected Riemannian spin manifold (M^n, g, T) , with $\nabla^c T = 0$ and positive scalar curvature given by $\operatorname{Scal}^g = \frac{9(n-1)\gamma^2}{4n}$ for some constant $0 \neq \gamma \in \operatorname{Spec}(T)$. If the symmetric endomorphism $dT + \frac{1}{2} \left[\frac{9(n-1)}{4n} \gamma^2 - \frac{3}{2} ||T||^2 \right]$ acts on Σ with **non-negative eigenvalues**, then the following classes of spinors, if existent, coincide

$$\operatorname{Ker}(\nabla^{c}) \cong \operatorname{Ker}(D^{c}) \cong \bigoplus_{\gamma \in \operatorname{Spec}(T)} \left[\Gamma(\Sigma_{\gamma}) \cap \mathcal{K}(M^{n}, g)_{\frac{3\gamma}{4n}} \right]$$

Extension to ∇^c -parallel TsT and KsT

Thm.3 [Chr.'15] Let (M^n, g, T) be a compact connected Riemannian spin manifold with $\nabla^c T = 0$ and assume that $\varphi \in \Gamma(\Sigma)$ is a spinor field such that $\nabla^c \varphi = 0$, where $\nabla^c = \nabla^g + \frac{1}{2}T$ is the characteristic connection. Let $\gamma \in \mathbb{R} \setminus \{0\}$ be a non-zero real number. Then, the following conditions are equivalent:

(a)
$$\varphi \in \Gamma(\Sigma_{\gamma}) \cap \operatorname{Ker}(P^{s}) := \operatorname{Ker}(P^{s}|_{\Sigma_{\gamma}})$$
 w.r.t. the family $\{\nabla^{s} : s \in \mathbb{R} \setminus \{1/4\}\}$,
(b) $\varphi \in \mathcal{K}^{s}(M, g)_{\zeta}$ w.r.t. the family $\{\nabla^{s} : s \in \mathbb{R} \setminus \{0, 1/4\}\}$ with $\zeta = 3(1 - 4s)\gamma/4n$
(c) $\varphi \in \mathcal{K}(M, g)_{\kappa}$ with $\kappa = 3\gamma/4n$.

Hints: $\nabla^s_X \varphi = \nabla^c_X \varphi + \frac{4s-1}{4} (X \lrcorner T) \cdot \varphi$ and $D^s(\varphi) = D^c(\varphi) + \frac{3(4s-1)}{4} T \cdot \varphi$. Thus

$$\nabla_X^c \varphi + \frac{4s-1}{4} (X \lrcorner T) \cdot \varphi + \frac{1}{n} X \cdot \left\{ D^c(\varphi) + \frac{3(4s-1)}{4} T \cdot \varphi \right\} = 0.$$

If $\varphi \in \operatorname{Ker}(\nabla^c) \cap \operatorname{Ker}(P^s|_{\Sigma_{\gamma}})$, then

$$(X \lrcorner T) \cdot \varphi + \frac{3\gamma}{n} X \cdot \varphi = 0.$$

Cor. If $\varphi \in \text{Ker}(\nabla^c)$ is a real Killing spinor with $\kappa = 3\gamma/4n$ then $\beta_{\text{univ}}(\gamma) = \beta_{\text{tw}}(\gamma)$ identically.

Hints: If $\varphi \in \mathcal{K}(M^n, g)_{\frac{3\gamma}{4n}}$, then $\operatorname{Scal}^g = \frac{9(n-1)}{4n}\gamma^2$ is constant; because $\varphi \in \Sigma_{\gamma}$ is ∇^c -parallel and the scalar curvature satisfies the desired formula, for $n \leq 8$ we also have $||T||^2 = \frac{2(9-n)}{9(n-1)}\operatorname{Scal}^g$. Moreover, Thm.3 tell us that this is also a TsT for some $s \neq 1/4$; thus one may assume without loss of generality that $s = (n-1)/4(n-3) \neq 1/4$. Hence,

$$\beta_{\text{tw}}(\gamma) = \frac{n \left[9(n-3)^2 + (n-5)(9-n) + 4n(4-n)\right]}{36(n-1)(n-3)^2} \operatorname{Scal}^g = \frac{n}{9(n-1)} \operatorname{Scal}^g = \frac{\gamma^2}{4} = \beta_{\text{univ}}(\gamma)$$

Lem.4 Let $0 \neq \gamma \in \text{Spec}(T)$ be a non-zero real *T*-eigenvalue. Then the following hold:

(a) A Killing spinor with torsion $\varphi \in \mathcal{K}^{s}(M, g)_{\frac{3\gamma(1-4s)}{4n}}$ for some $s \neq 0, 1/4$ is characteristic, if and only $\varphi \in \Sigma_{\gamma}$.

(b) A twistor spinor with torsion $\varphi \in \operatorname{Ker}(P^s|_{\Sigma_{\gamma}})$ for some $s \neq 0, 1/4$ is characteristic, if and only if φ is a D^s -eigenspinor with eigenvalue $-\frac{3\gamma(1-4s)}{4}$ i.e. $\varphi \in \mathcal{K}^s(M,g)_{\frac{3\gamma(1-4s)}{4n}} \cap \Gamma(\Sigma_{\gamma})$. In particular, for s = 0, a twistor spinor $\varphi \in \operatorname{Ker}(P^g|_{\Sigma_{\gamma}})$ is characteristic, if and only if $D^g(\varphi) = -\frac{3\gamma}{4}\varphi$, i.e. $\varphi \in \mathcal{K}(M,g)_{\frac{3\gamma}{4n}} \cap \Gamma(\Sigma_{\gamma})$. **Thm.4** [Chr.'15] Let (M^n, g, T) be compact connected Riemannian spin manifold (M^n, g, T) , with $\nabla^c T = 0$ and positive scalar curvature given by $\operatorname{Scal}^g = \frac{9(n-1)\gamma^2}{4n}$ for some constant $0 \neq \gamma \in \operatorname{Spec}(T)$. If the symmetric endomorphism $dT + \frac{1}{2} \left[\frac{9(n-1)}{4n} \gamma^2 - \frac{3}{2} ||T||^2 \right]$ acts on Σ with non-negative eigenvalues, then the following classes of spinors, if existent, coincide

$$\operatorname{Ker}(\nabla^{c}) \cong \bigoplus_{\substack{\gamma \in \operatorname{Spec}\,(T)}} \left[\Gamma(\Sigma_{\gamma}) \cap \mathcal{K}(M,g)_{\frac{3\gamma}{4n}} \right]$$
$$\cong \bigoplus_{\substack{\gamma \in \operatorname{Spec}\,(T)}} \left[\Gamma(\Sigma_{\gamma}) \cap \mathcal{K}^{s}(M,g)_{\frac{3(1-4s)\gamma}{4n}} \right]$$
$$\cong \bigoplus_{\substack{\gamma \in \operatorname{Spec}\,(T)}} \left[\operatorname{Ker}(P^{s}|_{\Sigma_{\gamma}}) \cap \operatorname{Ker}(D^{c}) \right].$$

Here, the parameter s takes values in $\mathbb{R}\setminus\{0, 1/4\}$ for the third set, and for the final set it is $s \in \mathbb{R}\setminus\{1/4\}$.

Representative examples

Thm.5 [Chr.'15] On a 6-dimensional nearly Kähler manifold (M^6, g, J) endowed with its characteristic connection ∇^c , the following classes of spinor fields coincide:

- (1) TsT w.r.t. the family $\{\nabla^s : s \in \mathbb{R} \setminus \{1/4\}\}$, lying in $\Sigma_{\pm 2||T||}$,
- (2) KsT w.r.t the family $\{\nabla^s : s \in \mathbb{R} \setminus \{0, 1/4\}\}$, with $\zeta := \mp \frac{(4s-1)}{4} \|T\|$,
- (3) Riemannian Killing spinors,
- (4) ∇^c -parallel spinors.
- Known for $s = 5/12 = \frac{(n-1)}{4(n-3)}$ by [Agricola.-Becker-B.-Kim'12].

Thm.6 [Chr.'15] On a **nearly-parallel** G₂-manifold (M^7, g, ω) endowed with its characteristic connection ∇^c , the following classes of spinor fields coincide:

- (1) TsT w.r.t. the family $\{\nabla^s : s \in \mathbb{R} \setminus \{1/4\}\}$, lying in $\sum_{-\frac{7\tau_0}{6}} \equiv \sum_{-\sqrt{7}||T||}$,
- (2) KsT w.r.t. the family $\{\nabla^s : s \in \mathbb{R} \setminus \{0, 1/4\}\}$, with $\zeta := \frac{(4s-1)\tau_0}{8} = \frac{3(4s-1)\|T\|}{4\sqrt{7}}$,
- (3) Riemannian Killing spinors,
- (4) ∇^c -parallel spinors.

Strong geometric constraints

Prop.3 [Chr.'15] Assume that $\nabla^c T = 0$ and that (M^n, g, T) is complete and admits a ∇^c -parallel spinor $0 \neq \varphi \in \Sigma_{\gamma}$ ($\mathbb{R} \ni \gamma \neq 0$) lying in the kernel $\text{Ker}(P^s)$ for some $s \neq 1/4$. Then, for any $s \in \mathbb{R}$ the following hold

$$\operatorname{Ric}^{s}(X) \cdot \varphi = \frac{6\gamma^{2}}{n^{2}} \Big[\frac{6(n-1)(1-4s)^{2} + 96s(1-4s) + 16s(3-4s)(n-3)}{16} \Big] X \cdot \varphi,$$

$$\operatorname{Scal}^{s} \varphi = \frac{6\gamma^{2}}{n} \Big[\frac{6(n-1)(1-4s)^{2} + 96s(1-4s) + 16s(3-4s)(n-3)}{16} \Big] \varphi.$$

(a) (M^n, g) is a compact Einstein manifold with constant positive scalar curvature $\operatorname{Scal}^g = \frac{9(n-1)\gamma^2}{4n}$.

(b) For any n > 3, (M^n, g, T) is a strict ∇^c -Einstein manifold with parallel torsion and constant scalar curvature $\operatorname{Scal}^c = \frac{3(n-3)\gamma^2}{n}$. For n = 3, (M^3, g, T) is Ric^c -flat.

(c) (M^n, g, T) is ∇^s -Einstein (with non-parallel torsion) for any $s \in \mathbb{R} \setminus \{0, 1/4\}$ i.e.

 $\operatorname{Ric}^{s} = \frac{\operatorname{Scal}^{s}}{n}g, \quad \forall s \in \mathbb{R} \setminus \{0, 1/4\}.$

<u>Remarks</u>: (1) The conditions $\nabla^c \varphi = 0$ and $\varphi \in \text{Ker}(P^s|_{\Sigma_{\gamma}})$ for some $s \neq 1/4$, can be replaced by either

•
$$\nabla^c \varphi = 0$$
 and $\varphi \in \mathcal{K}^s(M,g)_{\frac{3\gamma(1-4s)}{4n}}$ for some $s \neq 0, 1/4$, or

•
$$\nabla^c \varphi = 0$$
 and $\varphi \in \mathcal{K}(M,g)_{\frac{3\gamma}{4n}}$!!!

(2)

$$\operatorname{Ric}^{g}(X) \cdot \varphi = 4\kappa^{2}(n-1)X \cdot \varphi = \frac{9(n-1)\gamma^{2}}{4n^{2}}X \cdot \varphi,$$

$$\operatorname{Scal}^{g} = 4\kappa^{2}n(n-1) = \frac{9(n-1)\gamma^{2}}{4n}.$$

Thus (M^n, g) must be Einstein with positive scalar curvature (compactness by Myers's theorem).

(3) We can present a *different proof* for the original Einstein condition, without using the fact that such a spinor must be a real Killing spinor. For this we provide first the existence of a ∇^c -Einstein structure (and its explicit form), and then we use this fact to describe the original Einstein condition.

Hints: By assumption
$$\nabla^c \varphi = 0$$
 and $\varphi \in \Sigma_{\gamma}$. Thus
(1) $\operatorname{Ric}^c(X) \cdot \varphi = \frac{1}{2}(X \lrcorner dT) \cdot \varphi = (X \lrcorner \sigma_T) \cdot \varphi$.
(2) $-2(X \lrcorner \sigma_T) = \frac{1}{2}(T^2 \cdot X - X \cdot T^2) = (X \lrcorner T) \cdot T - T \cdot (X \lrcorner T) \Rightarrow$
 $\operatorname{Ric}^c(X) \cdot \varphi = -\frac{1}{2} [(X \lrcorner T) \cdot T - T \cdot (X \lrcorner T)] \cdot \varphi$. (\clubsuit)

(3) $T \cdot \varphi = \gamma \varphi$, $(X \lrcorner T) \cdot \varphi + \frac{3\gamma}{n} X \cdot \varphi = 0$. Altogether:

$$\operatorname{Ric}^{c}(X) \cdot \varphi = \frac{3(n-3)\gamma^{2}}{n^{2}}X \cdot \varphi.$$

 \longrightarrow The original Einstein condition; we use the formula: [A.-Becker-B.-Kim'12]

$$\sum_{i} e_{i} \cdot R^{g}(X, e_{i})\varphi = \sum_{i} e_{i} \cdot R^{c}(X, e_{i})\varphi - \frac{6}{16}(X \sqcup \sigma_{T}) \cdot \varphi + \frac{1}{8}\sum_{i} T(X, e_{i}) \cdot (e_{i} \sqcup T) \cdot \varphi$$
that $\sum_{i} e_{i} \cdot R^{g}(X, e_{i}) (\varphi = -\frac{1}{8}\operatorname{Bic}^{g}(X) \cdot (\varphi)$

Notice that $\sum_i e_i \cdot R^g(X, e_i)\varphi = -\frac{1}{2}\operatorname{Ric}^g(X) \cdot \varphi$.

(4) For $s \neq 0, 1/4$ we apply the formulas (induced by our Lemma 1 – see also [Becker-Bender's Phd'12]) $\operatorname{Ric}^{s}(X) \cdot \varphi = 4(n-1)\zeta^{2}X \cdot \varphi - 16s\zeta(X \sqcup T) \cdot \varphi + 2s(3-4s)(X \sqcup \sigma_{T}) \cdot \varphi,$ $\operatorname{Scal}^{s} \varphi = 4n(n-1)\zeta^{2}\varphi + 48s\zeta T \cdot \varphi - 8s(3-4s)\sigma_{T} \cdot \varphi.$

Examples

• Consider a nearly Kähler manifold (M^6, g, J) . Recall that there exist two ∇^c -parallel spinors φ^{\pm} with $\gamma = \pm 2 \|T\|$ which are both TsT for some $s \neq 1/4$. Hence,

$$\operatorname{Ric}^{s}(X) \cdot \varphi^{\pm} = \frac{(5-16s^{2})}{4} \|T\|^{2} X \cdot \varphi^{\pm} = \frac{(5-16s^{2})}{2} \tau_{0} X \cdot \varphi^{\pm}, \quad \forall \ s \in \mathbb{R}$$

$$\operatorname{Ric}^{c}(X) \cdot \varphi^{\pm} = \frac{3(n-3)\gamma^{2}}{n^{2}} X \cdot \varphi^{\pm} \Rightarrow \operatorname{Ric}^{c}(X) \cdot \varphi^{\pm} = \|T\|^{2} X \cdot \varphi^{\pm},$$

$$\operatorname{Ric}^{g}(X) \cdot \varphi^{\pm} = \frac{9(n-1)\gamma^{2}}{4n^{2}} X \cdot \varphi^{\pm} \Rightarrow \operatorname{Ric}^{g}(X) \cdot \varphi^{\pm} = \frac{5}{4} \|T\|^{2} \cdot \varphi^{\pm}.$$

....by the twistor equation: $(X \lrcorner T) \cdot \varphi^{\pm} = \mp ||T|| X \cdot \varphi^{\pm}.$

• A direct computation shows that :

$$\left[(X \sqcup T) \cdot T - T \cdot (X \sqcup T) \right] \cdot \varphi^{\pm} = -2 \|T\|^2 X \cdot \varphi^{\pm}.$$

and the results follows by (\clubsuit) .

• Consider a proper nearly parallel G_2 -manifold (M^7, g, ω) . Recall that there is a unique ∇^c -parallel spinor field φ_0 with $\gamma = -\sqrt{7}||T||$. Thus

$$\operatorname{Ric}^{s}(X) \cdot \varphi_{0} = \frac{6(9-16s^{2})}{28} \|T\|^{2} X \cdot \varphi_{0} = \frac{(9-16s^{2})}{24} \tau_{0}^{2} X \cdot \varphi_{0}, \quad \forall \ s \in \mathbb{R}$$

in particular

$$\operatorname{Ric}^{c}(X) \cdot \varphi_{0} = \frac{12}{7} \|T\|^{2} X \cdot \varphi_{0}, \quad \operatorname{Ric}^{g}(X) \cdot \varphi_{0} = \frac{27}{14} \|T\|^{2} X \cdot \varphi_{0}.$$

• In a line with nearly Kähler manifolds in dimension 6, we can compute Ric^c in a direct way, since

$$(X \lrcorner T) \cdot \varphi_0 = \frac{\tau_0}{2} X \cdot \varphi_0 = \frac{3 \|T\|}{\sqrt{7}} X \cdot \varphi_0.$$

Thus

$$\left[(X \lrcorner T) \cdot T - T \cdot (X \lrcorner T) \right] \cdot \varphi_0 = -\frac{24}{7} \|T\|^2 X \cdot \varphi_0$$

and the result follows by (\clubsuit) .

Conclusions

• We deduce that on a triple (M^n, g, T) with $\nabla^c T = 0$, the existence of a spinor field $\varphi \in \Gamma(\Sigma)$ satisfying simultaneously the equations

$$\nabla_X^c \varphi = 0, \quad \nabla_X^s \varphi = \zeta X \cdot \varphi,$$

for some real numbers $s \neq 0, 1/4$, $\zeta \neq 0$, where $\nabla^s = \nabla^g + 2sT$, imposes much harder geometric restrictions than the original Killing spinor equation, namely:

Type of Killing spinors	Geometric conclusions
Killing spinors with Killing number $\kappa \in \mathbb{R} ackslash \{0\}$	• $\operatorname{Ric}^g = 4\kappa^2(n-1)g$, $\operatorname{Scal}^g = 4\kappa^2n(n-1)$
$ abla^c$ -parallel KsT w.r.t. $ abla^s = abla^g + 2sT$ with Killing number $\zeta = \frac{3(1-4s)\gamma}{n} \neq 0$ for some $\mathbb{R} \ni \gamma \neq 0$, $\mathbb{R} \ni s \neq 0, 1/4$	• φ is a real Killing spinor: $T \cdot \varphi = \gamma \cdot \varphi \neq 0$ • $\operatorname{Ric}^{s} = \frac{\operatorname{Scal}^{s}}{n}g \forall \ s \in \mathbb{R}$, in particular : - $\operatorname{Ric}^{g} = \frac{9(n-1)\gamma^{2}}{4n^{2}}g$, $\operatorname{Scal}^{g} = \frac{9(n-1)\gamma^{2}}{4n}$ - $\operatorname{Ric}^{c} = \frac{3(n-3)\gamma^{2}}{n^{2}}g$, $\operatorname{Scal}^{c} = \frac{3(n-3)\gamma^{2}}{n}$

<u>Remark</u>: One has to stress that this is not the case in general; there exist KsT which are not real Killing spinors, and thus manifolds which are *not* necessarily Einstein can be endowed with them, e.g. the Heisenberg group. [Becker-Bender's Phd'12]

• The Killing/twistor spinor equation with **torsion** behave <u>very different</u> than their Riemannian analogues, <u>depending on the geometry</u>!

...we need the classification of simply connected Riemannian manifolds admitting real KS \Rightarrow dimensions $4 \le n \le 8$ Th. Friedrich's school (Berlin, end of 80s). \rightarrow Any Einstein-Sasakian manifold M^{2m+1} admits real KS [Friedr.-Kath'90] $\bullet n = 3, 4, 8 \Rightarrow M^n = S^n$. [Friedrich'81], [Hijazi'81] $\bullet n = 5 \Rightarrow M^5$ Einstein-Sasakian manifold. [Friedrich-Kath'89] $\bullet n = 6 \Rightarrow M^6$ nearly Kähler manifold. [Friedr.-Grunewald '85-'90] $\bullet n = 7 \Rightarrow M^7$ nearly parallel G₂-manifold. [Friedr.-Kath'90], [F.K.M.S.'97]

• in odd dimensions $4m + 1 \ge 9, 4m + 3 \ge 11$ only spheres, Einstein-Sasakian manifolds and 3-Sasakian manifolds can admit real KS [Bär 93]

 \implies Notice that: An Einstein-Sasaki manifold M^{2m+1} $(2m+1 \ge 5)$ is **never** ∇^c -Einstein. [Agricola-Ferreira'12]

Thm.7 [Chr.'15] Let (M^n, g, T) be a compact connected Riemannian spin manifold with $\nabla^c T = 0$, endowed with a spinor field satisfying

$$\nabla^c_X \varphi = 0, \quad \nabla^s_X \varphi = \zeta X \cdot \varphi, \quad \text{for some real numbers } s \neq 0, 1/4, \text{ and } \zeta \neq 0,$$

with respect to the same Riemannian metric g. Then,

- $n = 3 \Rightarrow M^3 \cong S^3$ is isometric to the **3-sphere** (S³, g_{can})
- $n = 6 \Rightarrow M^6$ is isometric to a strict nearly Kähler manifold
- $n = 7 \Rightarrow M^7$ is isometric to a nearly parallel G₂-manifold

...some references

- I. Agricola, J. Höll, *Cones of G-manifolds and Killing spinors with skew torsion*, Ann. Mat. Pura Appl. **194**, (2015), 673-718.
- I. Agricola, J. Becker-Bender, H. Kim, *Twistorial eigenvalue estimates for generalized Dirac operators with torsion*, Adv. Math. **243** (2013), 296–329.
- Th. Friedrich, S. Ivanov, *Parallel spinors and connections with skew-symmetric torsion in string theory*. Asian J. Math. 6 (2), (2002), 303–335.
- I. Chrysikos, *Killing and twistor spinors with torsion*, arXiv:1509.08449.