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Plan of the talk: We will speak about twistor and Killing spinors with respect to a metric connection

with (totally) skew-symmetric torsion 0 # T € A3(T*M).

e Twistor spinors: Were introduced by R. Penrose and his collaborators, in General Relativity as
solutions of a conformal invariant spinorial field equation (twistor equation).

e During 80s: Systematic investigation of twistor spinors from the view point of conformal geometry
(Baum, Lichnerowicz, Friedrich).

e Why twistor spinors with torsion?

(eigenvalue estimates of I) by a twistor operator) [Agricola-Becker-B.-Kim'12]
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Dirac operator and twistor operator

e Let (M", g) be connected oriented Riemannian spin manifold, 3 the spinor bundle.

— Dirac operator D9 := p,oV9 : () 53 N(TM®Y) & I(D) P. Dirac (1902-1984)

Do) =%ie - Vi

— Penrose or twistor operator

Pl =poV! (X)L T(TM@L) B Iker p)

p:TM®> — kerpy C TM ® Y the orthogonal projection onto the kernel of the Clifford
multiplication.

Locally p(X ® ¢) = X®g0+%2;-1:1 e; ®e; - X -, thus

P(p) =5 ;@ {Vip+ Lle;- DI}




Def. A spinor field ¢ € I'(Y) is called

Killing spinor < V%@ = kX - ¢

twistor spinor < ¢ € Ker(PY) < Vo +1X - DI(p) =0

1) D9(p) = —nkep, so | ¢ € Ker(PY) | automatically.

— w € I'(X) is a Killing spinor iff p € Ker(PY) and ¢ is a D9-eigenspinor.
2) X¥ :=%i{p,e; - @) Killing vector field of (M", g)

3)dpe K(M™, g) k € R\{0} = (M", g) compact Einstein with positive Scal?,

Ric?(X) = 4(n — 1)k*X, Scal? = 4n(n — 1)k

e Th. Friedrich’s inequality (1980): (M", g) compact + spin. Then, the first eigenvalue of DY sat-
isfies

A > 4(71”_1) Scal? .,

Scal?

— equality case: ¢ must be a real KS: V% = ZF% n(n_mil“)X =KX Q.




Elementary properties of twistor spinors

(due to H. Baum '81, A. Lichnerowicz '87-'88 and Th. Friedrich '89 )

Let | ¢ € Ker(PY) | Then,

(1) For a conformal change § = e%“g, then

(TM,g) = (TM,§),X = X =¢"X, (X,9) = (Z,9),¢ ¢
DIi=e 5 "0DIoem", Pi=¢ioPloes
@ € Ker(PY) < e2 € Ker(PY)

(2) (D9)%() = gy Seald .

(3) V4 (D9(9)) = 5[ — Rict (X) + 2 X] - o = 48ehI(X) - .



Consequences

— ¢ € ['(Y) is a twistor spinor iff ¢ & D9(p) € I'(F) is parallel with respect the covariant
derivative on I/ = Y & X given by

% (1/n)X
Vi =

—2Sch!(X) V%
—> Any twistor spinor ¢ € Ker(PY) is defined by its values ©(p), DI(¢(p)) at some point p € M.

= dim Ker(PY9) < 22+ = 2(dim A,,).

—> Zeros of ¢ € Ker(PY) are isolated.



Generalization to metric connections with skew-torsion

e {V®:5¢c R}, totally skew-symmetric torsion 451", T' € N> M:
g VY, Z)=g(V%Y, Z)+2sT(X,Y,7Z), seR.

Special members:
e s =0 — L-C connection (T = 0)
o s=1/4 — VY4 =V := VY + 1T (characteristic connection)

e GENERAL STRATEGY: Given a G-structure (G C SO(n)) replace the L-C connection VY with a

metric connection preserving the G-structure.

— If the torsion form T' € A*(T*M) (< same geodesics with V9), then we get the characteristic
connection V%

o(V§Y. Z) = (V&Y. 2) + [T(X,Y. Z),
e If G is contained in the stabiliser of a generic spinor field then 4 a Vparallel spinor: V¢p =0
e n=>5= G==5U(2)
e n=06= G=_SU(3)
e n=7=>G0G=0G0Gy

e n=8= G = Spin(7)



The lift of V° and V¢ into X::
Vi =Vhe+s(XT) ¢, Vip=Vie+HXIT) ¢

® D°=poV? ||D(p)=xie-Vip=DIp)+3sT ¢

o P° = po \VA P‘S(QO) — Z;-zzl e; & {ngQO + %6Z‘ . DSC,O}

Def. [Agricola-Becker-Bender-Kim'12], [Agricola-Holl'13]
Killing spinor with torsion (KsT) < V%¢ = (X - ¢, for some ( € R\{0} and s € R\{0}.

Twistor spinor with torsion (TsT) < ¢ € Ker(P?) for some s # 0 <

1

The interest in TsT and in some special cases KsT is due to the fact that they realize (under
the condition V¢T" = 0) the equality case for eigenvalue estimates of the cubic Dirac operator
|Agricola-Becker-B.-Kim'12]
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i.e. the Dirac operator associated to the connection with torsion 7'/3.



From now on we assume (M", g, T): | VT = 0.

Consequences

o dT =207 where o7 = %Zi(@iJT) N (e;1T).
o T =0V secR =|Ric’ = Ric! —45°9 S(X, Y) = Zig(T(X, ei), T(K GZ))

— Set: | D%(p) == x(e;0T) - V..

(DY) =

P -

<Dc)2 _

(Generalized) Schrondinger-Lichnerowicz formulas

1
A9 + 1 Scal?, [Scrénd.62], [Lichn.63]

1 1 1
AV 4  Seald +dT 8||T||2 [Bis 89], [Ko.99], [1.-D.00], [Agric.02]
1 1 1
AV 4 = 8cald ——T2 4 2| T2
+ 4SCa i +8|| |

1 1
A1/4 + 2dT — D1/4 + 1 Scal® [Friedr.—lv.'Ol], [Agric.'02]
1
A%+ s(3 — 4s)dT — 4sD° + 1 Scal®  [F-Iv.01], [Agric.02], [A.-F.03]

1
NS — sT? +  Scal? +(s - 25%)||T||>  [F-Iv. '01], [A-Friedr.03]



The anticommutaror of D® and T (in the case | VT =0 )

D?-T+T.-D°= (1 — 4S>dT — 9D = D¢ . T+T.D = —-9D° [Friedr.—lv.’Ol]

(D32 T =T (D32 = D> T=T-10°  [Agric-Friedr'03]
® Y. decomposes into a direct sum of T-eigenbundles preserved by V: [Agric.-Friedr.03]

Y= & X, VE, CX, VyeSpee(T), I'E)= & TI(&,)
~vE€Spec(T) ~vESpec(T)

Universal estimate Al(wQ‘zv) Scalrgnm —|—8||T||2 1 2= Buniv(7Y)

® cquality case: iff ¢ is | V parallel | and Scal? = constant.

e Twistorial estimate [Agric.-Becker-B.-Kim'12].

M(BI5,) 2 gy Sealihin + b 1T + {55007 = Bu(d)

® cquality case: iff pis | TsT |for s = (n — 1)/4(n — 3) and Scal? = constant.
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Twistor spinors with torsion

Lem.1 [Chr-2015] For any twistor spinor ¢ € Ker(P?) and for any vector field X the following
relations hold:

_; Ric*(X) - = _8;(XJT) D)+ 2V§(DS(¢))
_iX : (DS)2(<70) — s(3 —4s)(Xao7) - .
;Scals p = _ijT - D*(p) + Hn = 1)(D8)2(9@)

—4s(3 — 4s)or - .
Hints: [Becker-Bender's PhD '12], [Agric.-Becker-B.-Kim '12] (s = 1/4)

1
>ei R(X e)p = ) Ric*(X) - o+ s(3 — 4s)(Xor) - .

Remark : For a TsT ¢ € Ker(P?) it holds that

D) = =3T - D%(p), A%(p) = L(D*)(p)
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...Lemma 1 implies that

s /s N sn 8(n —1)
Vi(Dp) = GSA(X) ot (S )

+1§X~T> .+(3—45)(X-dT+(n— 1)(XJJT))'90]-

Lem.2 The mapping V** : T'(E) — I'(T*M ® E) given by

sn(3 — 4s)
(- D(n-2)

g [ XD + X 1) @)+ Vi),

where X € I'(T'M) and @ := ] @ 9 € I'(X & X), defines a covariant derivative on the vector

bundle £/ =X & ).
e Special member: s =0 — VO =VF,

s s 1 n s
Vi@ = (Vxert X @) o (-5 S (X) i -

{X -dT + (n — 1)(X_|JT)] -1
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Thm.1 [Chr'15] Let (M",g,T) (n > 3) a connected Riemannian spin manifold with V°T" = 0.
Then, any twistor spinor with torsion ¢ € Ker(P?) satisfies the equation

Vi (e @ D(p)) = 0.

Conversely, if (o @) € I'(E) is V*¥-parallel, then ¢ is a twistor spinor with torsion such that

D) =

Cor. Let (M", g, T) (n > 3) a connected Riemannian spin manifold with V“T" = (. Then,

1= 2(dim A,,).

N3

a) dim Ker(P?®) < 2!

b) If ¢ and D?*(yp) vanish at some point p € M and ¢ € Ker(P?), then p = 0.
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Prop.1 [Chr'15] Let (M", g, T) (n > 3) be a connected Riemannian spin manifold with V1" = 0.
Then, any zero point of 0 # ¢ € Ker(P?) is isolated, i.e. the zero-set of ¢ is discrete.

Hints: Compute the Hessian Hess" of the function |¢|? in p € M.
2

Hessy (pl?) (X, V) = -

(v D), X - D) = (1D (@) )pn(X, V).

e So, if (D*(¢)), # 0, then p is a non-degenerate critical point of |¢|* and thus an isolated zero

p

point of w. If (D*(¢)), = 0, then ¢ must be trivial.
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V¢ parallel spinors and characteristic spinors
e VC-parallel spinor: V¢p =0
e characteristic, or V°-harmonic spinor: D¢(¢) = 0

Known results (1) [Friedr.-Iv.01] Let @y € Ker(V¢). Then,
Scal®pg = —=2dT -y = —dor -y, (*)

1
RiCC(X) Q) = 2()(_ldT + Vg(T) * ©0-

(2) The scalar curvatures Scal®, Scal? are constant. If in addition ¢ € X, for some v # 0, i.e.
Io=9¢ =
1 1
Scal! = 2y* — ZHTH2, Scal® = 2(v* — | T|I*), Ric“(X) = 2(X_|dT) -0 = (Xo7) - 0.

(3) In the presence of a V-parallel spinor ¢ € ¥, [Agric.-Becker-B.-Kim. '12]

BtW(V) < 5univ(/7)'
For n < 8 [Agric.-Becker-B.-Kim. '12]
9(n —1)
g AT
2(9 — n)

® cquality case: iff universal estimate coincides with twistorial estimate.

0 < 2n||T|)* + (n — 9)7?, Scal? <

15



e It is an interesting question to check if these twistor spinors with torsion are also some kind of

Killing spinors and what the geometric inclusions are when the two estimates coincide, if any.

—> In general, the twistor equation with torsion cannot be reduced to a Killing spinor equation
e Do there exist exceptions? YES!

o n=23= (S gean) (new)

e n = 6 = nearly Kihler mnfds. [Agric.-Becker-B.-Kim. "12]

e n =7 = nearly parallel Go-mnfds. (new)
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Prop.2 [Chr15] Let (M", g, V) be a compact connected Riemannian spin manifold with V¢T" = 0
and positive scalar curvature, carrying a non-trivial spinor field 0 # ¢ € I'(X) such that

Vo =0, T -py=vpo.

Then, ¢ is a real Killing spinor (with respect to g) if and only if

9 4n

v = 9 —1) Scal?. ()

If this is the case, then the Killing number is given by x := 37v/4n and

(XT)-po+2X - 9pp=0, VXel(TM).

e For n < 8, the condition (f) is equivalent to

2 9(n — 1
P TR o Sealr = Ny
9—n 2(9 —n)

If this is the case, then dT - ¢y = —%2_3)@00.
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Hints: (1) Since

D¢ = DYV4 = D9+2T

and ¢y € X is Vparallel, it follows that g is an eigenspinor of the Riemannian Dirac operator DY

37

Dg(sﬁo) = _ZSOO-

(2) [Friedrich '80] Given a compact Riemannian spin manifold with positive scalar curvature, if ¢y €
['(X) is an eigenspinor of DY with one of the eigenvalues

1 J
41 nScalmm7
2\ n—1

then g is a real Killing spinor with corresponding Killing number
(3) Since ¢ € Ker(V®) :={p € I'(X,) C I'(X) : V9 = 0}, Scal’ is constant

18



Cor. Let ¢ € Ker(V). If | Buniv(7)=08w () |, then ¢ is a real Killing spinor, in particular ¢ €
K(M", 9)3—1 NI(E,).

Question: What about the converse? YES

//

Observe that on a compact connected Riemannian spin manifold (M", g, T) with positive scalar

curvature

- - - - - - 3"/
® real Killing spinors with Killing number xk = o

® V¢parallel spinors lying in >, or

® characteristic spinors lying in >,
if existent, they are sharing a common property:

They are all eigenspinors of the Riemannian Dirac operator with the same eigenvalue —3—47 =0,
where 0 # v € Spec(T') is a T-eigenvalue.
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Examples.

(1) 6-dimensional nearly Kahler manifolds

|Gray'70], [Friedr.-Grunewald '86], [Friedr.-lvanov.'01]

Consider a 6-dimensional NEARLY KAHLER MANIFOLD, i.e. an almost Hermitan manifold (A%, g, J)
such that

(V%)X = 0.

e There exists unique characteristic connection V¢ with parallel skew-torsion, given by

T(X,Y) = (V%J)JY.

— There exist two V-parallel spinors ¢ lying in 3, with v = £2||T.
e Both are real Killing spinors with Killing number given by x := +||T|| /4.
Indeed,

m&:ﬂwm &m%fﬂww

Notice that Scal? coincides with Q(an)’yQ = g 711 |7"||?. Thus, the spinors go must be real Killing
spinors with x = 3v/4n = =£||T| /4. In particular, dT - p* = —1 Scal® ™ = W@i, ie.

dT - p= = =3||T||*¢*
21



(2) Nearly parallel Go-manifolds

[Fr.-Kath.-Mor.-Sem. 97|, [Friedr.-lv.01]

e Go 14-dimensional compact simple Lie group can be viewed as;

— the stabiliser of a generic 3-form w € A*(R)

W = €127 + €135 — €146 — €236 — €245 — €347 T €567
— or the subgroup of Spin(7) preserving the unit spinor 1y = (1,0,...,0)' € S(A7) C A; := RS
Gy ={A e GL,R:w= A"} ={g € Spin(7) : gtvg = ¥p}.
e Under the action of Go,
A7 =Repg @ {X -1y : X € R}

In particular w and 1)y induce equivalent data:

w(X,Y,Z) - <XYZ¢O>¢0>

Def. A Gy-structure on M is a Gy-reduction of the frame bundle SO(T'M").
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Def. A Go-structure on M is said to be NEARLY PARALLEL if the associated spinor ¢ is a real

Killing spinor. This is equivalent to say that dw = —7 * w for some real constant 7y # 0.

® ! characteristic connection V¢ with parallel skew-torsion 1" given by

7 72,

360

—> There is a unique Vparallel spinor g with v = —/7||T||. [Friedrich-lvanov '01]

1
T = 6(dw, *w) - W = —g)w, 1T||* =

® ( is a real Killing spinor with x = ——HTH
Ric? = 4||T|y21d, Scal? = —HT||2
Indeed, Scal? coincides with (2711)72 = 3583\\71\2 Thus, ¢y must be a Killing spinor with
k= 3y/4n = —rﬁHTH. In particular, dT"- ¢y = —%Z_?’)gpo, i.e. dT - @y = —6||T||*po.
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Lem.3 Let 0 # v € Spec(T') be a real non-zero T-eigenvalue. Then, a real Killing spinor ¢ €
K(M", g)s: is characteristic i.e. D(p) =0, iff ¢ € .

Hints: D¢ (p) = DI9(p) + %T S = —3—4%0 + %T c Q.

e One cannot claim that a Killing spinor with k = 3v/4n is V parallel, even if it is characteristic.

e With the aim to construct the desired one-to-one correspondence between spinor fields in Ker(V°)
and

Ker(D*) = {p € T(,) C T(%) : D(p) = 0},

the eigenvalues of the endomorphism | d7" + § Scal”| on ¥ must be non-negative [Friedr.-Iv.01].

Thm.2 [Chr'15] Let (M", g,T) be compact connected Riemannian spin manifold (M", g,T),

with V" = 0 and positive scalar curvature given by Scal? = % for some constant 0 ##

v € Spec(T). If the symmetric endomorphism | dT" + 5 l (n=1),2 _ gHTHZ] acts on X with non-

negative eigenvalues, then the following classes of spinors, if existent, coincide

Ker(V9) 2 Ker(D%) = @ [[(,) N K(M", g)s].

v€Spec(T')
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Extension to V parallel TsT and KsT

Thm.3 [Chr!15] Let (M", g,T) be a compact connected Riemannian spin manifold with V" = 0
and assume that ¢ € I'(X) is a spinor field such that V¢ = 0, where V¢ = V9 + T is the

characteristic connection. Let v € R\{0} be a non-zero real number. Then, the following conditions
are equivalent:

(a) p € I'(E,) N Ker(P?) := Ker( Pslz ) w.r.t. the family {V?*: s € R\{1/4}},

(b) ¢ € K¥(M, g)¢ w.r.t. the family {V*®:s € R\{0,1/4}} with ( = 3(1 — 4s)v/4n,

(c) ¢ € K(M,g), with k = 3v/4n.

Hints: Vip = Vi + E2(XJT) - ¢ and D*(¢) = D) + WT - . Thus

Vi + BLHXT) - o+ LX - (D) + 3Us=Ur . ) — 0,

If p € Ker(V¢) N Ker(P?|,. ), then

z)

3
(XJT)-QO—F?:Z/X-QO:O.
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Cor. If ¢ € Ker(V°) is a real Killing spinor with k = 3~/4n then | 5,1y (7)=0iw(7) | identically.

Hints: If o € KK(M™", g>i*7’ then Scal?y = M’ﬁ is constant; because ¢ € >, is V“parallel and the

1
4n
-, . 2(9—
scalar curvature satisfies the desired formula, for n < 8 we also have ||T||* = 95791_73 Scal?. Moreover,

Thm.3 tell us that this is also a TsT for some s # 1/4; thus one may assume without loss of generality
that s = (n — 1)/4(n — 3) # 1/4. Hence,

n[Q(n—3)2+(n—5)(9—n)+4n(4—n)}S b n g 19_72_
36(n — 1)(n — 3)2 cal = 9(n —1) car =T Buniv(7)

//))tw (A/ ) -

Lem.4 Let 0 # v € Spec(T') be a non-zero real T-eigenvalue. Then the following hold:

(a) A Killing spinor with torsion p € K*(M, g)su-1) for some s # 0, 1/4 is characteristic, if and only
O E Dny.

(b) A twistor spinor with torsion ¢ € Ker(P?|s; ) for some s # 0,1/4 is characteristic, if and only
if ¢ is a D’-eigenspinor with eigenvalue —M i.e. p € K°(M, g)m(;z;s) N I'(2,). In particular,
for s = 0, a twistor spinor ¢ € Ker(PY|y ) is characteristic, if and only if DI(p) = —32¢p, i.e.

p € K(M,g)s= NT(Z,).
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Thm.4 [Chr/15] Let (M™, g, T) be compact connected Riemannian spin manifold (M", g, T), with

: - . ‘ _ 9(n—1)y?
VT = 0 and positive scalar curvature given by Scal! = % for some constant 0 # v €

Spec(T'). If the symmetric endomorphism | d7" + 3 9(%1)72 — ;’HTHQ] acts on ¥ with non-negative

eigenvalues, then the following classes of spinors, if existent, coincide

Ker(V) = @ [I(S)NK(M,g)s]
~v€ESpec (T) *

o <5 F(Ey) M ]CS(M, g) 3(1—4s)w]
v€Spec (T) "

S & |Ker(P )N Ker(Dc)].
yESpec (T) L K

Here, the parameter s takes values in R\{0,1/4} for the third set, and for the final set it is

s € R\{1/4}.
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Representative examples

Thm.5 [Chr/15] On a 6-dimensional nearly Kihler manifold (M°, g, J) endowed with its
characteristic connection V¢, the following classes of spinor fields coincide:

(1) TsT w.r.t. the family {V*®: s € R\{1/4}}, lying in ZiZHTH’

(2) KsT w.r.t the family {V* : s € R\{0,1/4}}, with ¢ .= FE2|77,

(3) Riemannian Killing spinors,

(4) VCparallel spinors.

e Known for s =5/12 = 4(&—_13)) by [Agricola.-Becker-B.-Kim'12].

Thm.6 [Chr!15] On a nearly-parallel Go-manifold (M7, g,w) endowed with its characteristic
connection V¢, the following classes of spinor fields coincide:

(1) TsT w.r.t. the family {V*®: s € R\{1/4}}, lying in Z_% = E—\/?||T||'

(2) KsT w.r.t. the family {V*®: s € R\{0,1/4}}, with { := (4‘9—81)70 - 3(454_\}%””,

(3) Riemannian Killing spinors,

(4) VCparallel spinors.

28



Strong geometric constraints

Prop.3 [Chr15] Assume that V“T" = (0 and that (M", g,T) is complete and admits a V“parallel
spinor 0 # ¢ € ¥, (R 3 v # 0) lying in the kernel Ker(P?) for some s # 1/4. Then, for any s € R
the following hold

. 672 76(n — 1)(1 — 4s)? + 965(1 — 4s) + 165(3 — 4s)(n — 3
2 —1)(1 — 4s)* 1 —4s) 4+ 16s(3 — 4s)(n —
Seal' o — 6y {6(1@ )( s)° + 96s( s) + 16s(3 — 4s)(n 3)]90'
n 16
C1\A2
(a) (M", g) is a compact Einstein manifold with constant positive scalar curvature Scal? = 9<"4nl)7 :

(b) For any n > 3, (M",g,T) is a strict V°-Einstein manifold with parallel torsion and constant
scalar curvature Scal® = W For n =3, (M3,g,T) is Ric“flat.

(c) (M™,g,T)is V*-Einstein (with non-parallel torsion) for any s € R\{0,1/4} i.e.

Ric® = 5l g  vs € R\{0,1/4}.
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Remarks : (1) The conditions V@ = 0 and ¢ € Ker(P?y, ) for some s # 1/4, can be replaced
by either
e Vip=0and p € K*(M, g)su-s,) for some s # 0,1/4, or
e Vip=0and ¢ € K(M,g)s !
(2)
9(n — 1)y
Rit(X) - = 4x(n - DX-p= """y,
n
9(n — 1)y*
Scal! = 4r’n(n—1)= (n =11 :
4n

Thus (M", g) must be Einstein with positive scalar curvature (compactness by Myers's theorem).

(3) We can present a different proof for the original Einstein condition, without using the fact that
such a spinor must be a real Killing spinor. For this we provide first the existence of a V“-Einstein

structure (and its explicit form), and then we use this fact to describe the original Einstein condition.
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Hints: By assumption V@ = 0 and ¢ € X,. Thus
(1) Ric“(X) - ¢ = H(X 2dT) - ¢ = (X o7) - .

(2) —2(Xoop) =4(T* X = X -T?*) = (X T)-T—-T-(XT) =

Ric“(X) - p=—3|(XJT)- T —T-(XIT)| - . ()

B)T-p=vp, (XIT)-p+ %}X - = 0. Altogether:

3(n — 3)

2
8
5 X .

Ric“(X) - p =

— The original Einstein condition; we use the formula: [A.-Becker-B.-Kim'12)]

6 1
>e RI(X ej)p=23¢€ - R(X, e)p— 16(X_|0T) L+ 8ZT(X, e;) - (e;uT) - p.

Notice that & ¢; - RY(X, ¢;)p = —3 RicY(X) - ¢.
(4) For s # 0,1/4 we apply the formulas (induced by our Lemma 1 — see also [Becker-Bender's Phd'12])

Ric*(X) - ¢ = 4(n—1)CX - p—165C(XIT) - ¢+ 25(3 — 4s)(Xo7) - o,
Scal® o = 4n(n — 1) 4 48s¢T - ¢ — 85(3 — 4s)or - .
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Examples

e Consider a nearly Kihler manifold (MY, g, .J). Recall that there exist two V¢-parallel spinors ¢
with v = +2||T"|| which are both TsT for some s # 1/4. Hence,

Ric*(X) - p* = O8I 7)2x . o = G100 x 0t Vs e R

. C 3(’71— 3)72 . C
Ric/(X) - o* = X9t = RiC(X) - 0" = [ TIPXC- %,
9(n —1)
4n?

....by the twistor equation: (XJT) - o= = F||T|| X - o=.

Ric(X) - ¢F

2
gl . O
X-¢F = Ric/(X) - " = |T| - o™
e A direct computation shows that :

(X.T)-T—T-(XT)|-p= = =2|T|*X - ™.

and the results follows by ().
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e Consider a proper nearly parallel Co-manifold (M7, g, w). Recall that there is a unique V¢-parallel
spinor field ¢o with v = —+/7||T'||. Thus

Ric*(X) - o = SO0 712X - oy = B850 2% ., Vs eR|,

in particular
y 12 9 . g 27 9
Ric"(X) - o = —[[TI7X - w0, Ric?(X) - 0o = L ITIPX - 0.
e In a line with nearly Kahler manifolds in dimension 6, we can compute Ric in a direct way, since

3IT|

—X -
N ¥0-

~
(XJT) - o = 20X Qo =

Thus
24 5
(XAT) T =T+ (X2T)| - o = =2 ITIPX - o

and the result follows by (&).
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Conclusions

e We deduce that on a triple (M", g,
satisfying simultaneously the equations

T) with VT = 0, the existence of a spinor field ¢ € I'(X)

V& =0,

for some real numbers s #£ 0,1/4, ( # 0, where V* =

VY9 + 25T, imposes much harder geometric

restrictions than the original Killing spinor equation, namely:

TYPE OF KILLING SPINORS

GEOMETRIC CONCLUSIONS

Killing spinors with Killing number x € R\{0}

e Ric! = 4x%*(n — 1)g, Scal? = 4x’n(n — 1)

Ve-parallel KsT w.r.t. V® = VY9 + 2sT
: s _ 3(1—4s)
with Killing number ¢ = =27 £ 0
forsome R>~v#0, R>s+#0,1/4

e ¢ is a real Killing spinor: T - =7-p #0
e Ric® =352y v s eR, in particular :

— Ric? = oln-1)7? 7% Seal? = ("471)7
_ Ric¢ = (n 3) 7, Qeal¢ = 3(m=31"

n

Remark : One has to stress that this is not the case in general; there exist KsT which are not real

Killing spinors, and thus manifolds which are not necessarily Einstein can be endowed with them, e.g.

the Heisenberg group.

[Becker-Bender's Phd'12]

e The Killing/twistor spinor equation with torsion behave very different than their Riemannian

analogues, depending on the geometry!
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...we need the classification of simply connected Riemannian manifolds admitting real KS

— dimensions 4 < n < 8 Th. Friedrich’s school (Berlin, end of 80s).

— Any Einstein-Sasakian manifold AM/?"*1 admits real KS [Friedr.-Kath'90]

en=2348 = M"=-5" [Friedrich'81], [Hijazi'81]
en=>5 = M Einstein-Sasakian manifold. [Friedrich-Kath'89]

en=06 = M nearly Kihler manifold. |Friedr.-Grunewald '85-'90]
en=7 = MT nearly parallel Go-manifold. [Friedr.-Kath'90], [F.K.M.S.97]

e in odd dimensions 4m + 1 > 9,4m + 3 > 11 only spheres, Einstein-Sasakian manifolds and

3-Sasakian manifolds can admit real KS [Bar 93]

— Notice that: An Einstein-Sasaki manifold M*" "1 (2m+1 > 5) is never V°-Einstein. [Agricola-Ferreira'12)]
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Thm.7 [Chr!15] Let (M", g, T) be a compact connected Riemannian spin manifold with V°T" = 0,
endowed with a spinor field satisfying

Sp =0, V%p=C(X"p, forsome real numberss #0,1/4, and ( # 0,

with respect to the same Riemannian metric g. Then,
o n=3= M>=Sis isometric to the 3-sphere (S*, gean)
o n =06 = MY is isometric to a strict nearly Kihler manifold

en=7= MTis isometric to a nearly parallel Go-manifold
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