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Plan of the talk: We will speak about twistor and Killing spinors with respect to a metric connection
with (totally) skew-symmetric torsion 0 6= T ∈ Λ3(T ∗M).

• Twistor spinors: Were introduced by R. Penrose and his collaborators, in General Relativity as
solutions of a conformal invariant spinorial field equation (twistor equation).

• During 80s: Systematic investigation of twistor spinors from the view point of conformal geometry
(Baum, Lichnerowicz, Friedrich).

• Why twistor spinors with torsion?

(eigenvalue estimates of /D by a twistor operator) [Agricola-Becker-B.-Kim’12]

/D = Dg + 1
4
T.
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Dirac operator and twistor operator

• Let (Mn, g) be connected oriented Riemannian spin manifold, Σ the spinor bundle.

→ Dirac operatorDg := µ◦∇g : Γ(Σ) ∇
g

→ Γ(TM⊗Σ) µ→ Γ(Σ) P. Dirac (1902–1984)

Dg(ϕ) = ∑
i ei · ∇g

eiϕ

→ Penrose or twistor operator

P g := p ◦ ∇g : Γ(Σ) ∇
g

→ Γ(TM ⊗ Σ) p→ Γ(kerµ)
p : TM ⊗ Σ → kerµ ⊂ TM ⊗ Σ the orthogonal projection onto the kernel of the Clifford
multiplication.

Locally p(X ⊗ ϕ) = X ⊗ ϕ + 1
n
∑n
i=1 ei ⊗ ei ·X · ϕ, thus

P g(ϕ) = ∑n
i=1 ei ⊗ {∇g

eiϕ + 1
nei ·D

gϕ}
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Def. A spinor field ϕ ∈ Γ(Σ) is called

Killing spinor ⇔ ∇g
Xϕ = κX · ϕ

twistor spinor ⇔ ϕ ∈ Ker(P g) ⇔ ∇g
Xϕ + 1

nX ·D
g(ϕ) = 0

1) Dg(ϕ) = −nκϕ, so ϕ ∈ Ker(P g) automatically.

−→ ϕ ∈ Γ(Σ) is a Killing spinor iff ϕ ∈ Ker(P g) and ϕ is a Dg-eigenspinor.

2) Xϕ := ∑
i i〈ϕ, ei · ϕ〉 Killing vector field of (Mn, g)

3) ∃ ϕ ∈ K(Mn, g)κ κ ∈ R\{0} ⇒ (Mn, g) compact Einstein with positive Scalg,

Ricg(X) = 4(n− 1)κ2X, Scalg = 4n(n− 1)κ2.

• Th. Friedrich’s inequality (1980): (Mn, g) compact + spin. Then, the first eigenvalue of Dg sat-
isfies

λ2  n
4(n−1) Scalgmin

−→ equality case: ϕ must be a real KS: ∇g
Xϕ = ∓1

2

√
Scalgmin
n(n−1)X · ϕ = κX · ϕ.

4



Elementary properties of twistor spinors
(due to H. Baum ’81, A. Lichnerowicz ’87-’88 and Th. Friedrich ’89 )

Let ϕ ∈ Ker(P g) . Then,

(1) For a conformal change g̃ = e2ug, then

(TM, g) ∼= (TM, g̃), X 7→ X̃ := e−uX, (Σ, g)→ (Σ̃, g̃), ϕ→ ϕ̃

Dg̃ = e−
n−1

2 u ◦Dg ◦ e
n−1

2 u, P g̃ = e
u

2 ◦ P g ◦ e−
u

2

ϕ ∈ Ker(P g) ⇔ e
u

2 ϕ̃ ∈ Ker(P g̃)

(2) (Dg)2(ϕ) = n
4(n−1) Scalg ϕ.

(3) ∇gX(Dg(ϕ)) = n
2(n−2)

[
− Ricg(X) + Scalg

2(n−1)X
]
· ϕ = n

2 Schg(X) · ϕ.
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Consequences

⇒ ϕ ∈ Γ(Σ) is a twistor spinor iff ϕ ⊕ Dg(ϕ) ∈ Γ(E) is parallel with respect the covariant
derivative on E = Σ⊕ Σ given by

∇E
X =


∇g
X (1/n)X

−n
2 Schg(X) ∇g

X

 .

⇒ Any twistor spinor ϕ ∈ Ker(P g) is defined by its values ϕ(p), Dg(ϕ(p)) at some point p ∈M .

⇒ dim Ker(P g) ¬ 2[n2 ]+1 = 2(dim ∆n).

⇒ Zeros of ϕ ∈ Ker(P g) are isolated.
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Generalization to metric connections with skew-torsion

• {∇s : s ∈ R}, totally skew-symmetric torsion 4sT , T ∈ ∧3M :
g(∇s

XY, Z) = g(∇g
XY, Z) + 2sT (X, Y, Z), s ∈ R.

Special members:
• s = 0 −→ L-C connection (T ≡ 0)
• s = 1/4 −→ ∇1/4 ≡ ∇c := ∇g + 1

2T (characteristic connection)

• General Strategy: Given a G-structure (G ( SO(n)) replace the L-C connection ∇g with a
metric connection preserving the G-structure.
=⇒ If the torsion form T ∈ Λ3(T ∗M) (⇔ same geodesics with ∇g), then we get the characteristic
connection ∇c:

g(∇c
XY, Z) = g(∇g

XY, Z) + 1
2
T (X, Y, Z).

• If G is contained in the stabiliser of a generic spinor field then ∃ a ∇c-parallel spinor: ∇cϕ = 0

• n = 5 ⇒ G = SU(2)

• n = 6 ⇒ G = SU(3)

• n = 7 ⇒ G = G2

• n = 8 ⇒ G = Spin(7)
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The lift of ∇s and ∇c into Σ:
∇sXϕ = ∇gXϕ + s(XyT ) · ϕ, ∇cXϕ = ∇gXϕ + 1

4(XyT ) · ϕ.

• Ds = µ ◦ ∇s Ds(ϕ) = ∑
i ei · ∇s

eiϕ = Dg(ϕ) + 3sT · ϕ

• P s = p ◦ ∇s P s(ϕ) = ∑n
i=1 ei ⊗ {∇seiϕ + 1

nei ·D
sϕ}

Def. [Agricola-Becker-Bender-Kim’12], [Agricola-Höll’13]

Killing spinor with torsion (KsT) ⇔ ∇s
Xϕ = ζX · ϕ, for some ζ ∈ R\{0} and s ∈ R\{0}.

Twistor spinor with torsion (TsT) ⇔ ϕ ∈ Ker(P s) for some s 6= 0 ⇔

∇s
Xϕ + 1

n
X ·Ds(ϕ) = 0.

The interest in TsT and in some special cases KsT is due to the fact that they realize (under
the condition ∇cT = 0) the equality case for eigenvalue estimates of the cubic Dirac operator
[Agricola-Becker-B.-Kim’12]

/D = Dg + 1
4
T

i.e. the Dirac operator associated to the connection with torsion T/3.
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From now on we assume (Mn, g, T ): ∇cT = 0 .
Consequences

• dT = 2σT where σT = 1
2
∑
i(eiyT ) ∧ (eiyT ).

• δsT = 0 ∀ s ∈ R ⇒ Rics = Ricg−4s2S S(X, Y ) = ∑
i g(T (X, ei), T (Y, ei))

→ Set: Ds(ϕ) := ∑
i(eiyT ) · ∇seiϕ.

(Generalized) Schröndinger-Lichnerowicz formulas

(Dg)2 = ∆g + 1
4

Scalg, [Scrönd.’62], [Lichn.’63]

/D
2 = ∆1/4 + 1

4
Scalg +1

4
dT − 1

8
‖T‖2 [Bis.’89], [Ko.’99], [I.-D.’00], [Agric.’02]

= ∆1/4 + 1
4

Scalg−1
4
T 2 + 1

8
‖T‖2

(Dc)2 = ∆1/4 + 1
2
dT −D1/4 + 1

4
Scalc [Friedr.-Iv.’01], [Agric.’02]

(Ds)2 = ∆s + s(3− 4s)dT − 4sDs + 1
4

Scalc [F.-Iv.’01], [Agric.’02], [A.-F.’03]

(Ds/3)2 = ∆s − sT 2 + 1
4

Scalg +(s− 2s2)‖T‖2 [F.-Iv. ’01], [A.-Friedr.’03]
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The anticommutaror of Ds and T (in the case ∇cT = 0 )

Ds · T + T ·Ds = (1− 4s)dT − 2Ds ⇒ Dc · T + T ·Dc = −2Ds [Friedr.-Iv.’01]

(Ds/3)2 · T = T · (Ds/3)2 ⇒ /D
2 · T = T · /D2 [Agric.-Friedr.’03]

• Σ decomposes into a direct sum of T -eigenbundles preserved by ∇c: [Agric.-Friedr.’03]

Σ = ⊕
γ∈Spec(T )

Σγ, ∇cΣγ ⊂ Σγ, ∀γ ∈ Spec(T ), Γ(Σ) = ⊕
γ∈Spec(T )

Γ(Σγ)

Universal estimate λ1
(
/D

2∣∣∣∣Σγ
)
 1

4 Scalgmin +1
8‖T‖

2 − 1
4γ

2 := βuniv(γ)

• equality case: iff ϕ is ∇c-parallel and Scalg = constant.

• Twistorial estimate [Agric.-Becker-B.-Kim’12].

λ1( /D2|Σγ)  n
4(n−1) Scalgmin + n(n−5)

8(n−3)2‖T‖2 + n(4−n)
4(n−3)2γ

2 := βtw(γ)

• equality case: iff ϕ is TsT for s = (n− 1)/4(n− 3) and Scalg = constant.
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Twistor spinors with torsion
Lem.1 [Chr-2015] For any twistor spinor ϕ ∈ Ker(P s) and for any vector field X the following
relations hold:

−1
2

Rics(X) · ϕ = −8s
n

(XyT ) ·Ds(ϕ) + n− 2
n
∇s
X

(
Ds(ϕ)

)

−1
n
X · (Ds)2(ϕ)− s(3− 4s)(XyσT ) · ϕ.

1
2

Scals ϕ = −24s
n
T ·Ds(ϕ) + 2(n− 1)

n
(Ds)2(ϕ)

−4s(3− 4s)σT · ϕ.

Hints: [Becker-Bender’s PhD ’12], [Agric.-Becker-B.-Kim ’12] (s = 1/4)
∑
i
ei ·Rs(X, ei)ϕ = −1

2
Rics(X) · ϕ + s(3− 4s)(XyσT ) · ϕ.

Remark : For a TsT ϕ ∈ Ker(P s) it holds that

Ds(ϕ) = − 3
nT ·D

s(ϕ), ∆s(ϕ) = 1
n(Ds)2(ϕ)
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...Lemma 1 implies that

∇s
X

(
Ds(ϕ)

)
= n

2
Schs(X) · ϕ + sn

(n− 1)(n− 2)

[(8(n− 1)
n

(XyT )

+12
n
X · T

)
· Ds(ϕ) + (3− 4s)

(
X · dT + (n− 1)(XyσT )

)
· ϕ

]
.

Lem.2 The mapping ∇s,E : Γ(E)→ Γ(T ∗M ⊗ E) given by

∇s,EX (Φ) =
(
∇sXϕ1 + 1

n
X · ϕ2

)
⊕
(
− n

2 Schs(X) · ϕ1 −
sn(3− 4s)

(n− 1)(n− 2)
[
X · dT + (n− 1)(XyσT )

]
· ϕ1

− sn

(n− 1)(n− 2)
[8(n− 1)

n
(XyT ) + 12

n
X · T

]
· ϕ2 +∇sXϕ2

)
,

where X ∈ Γ(TM) and Φ := ϕ1 ⊕ ϕ2 ∈ Γ(Σ ⊕ Σ), defines a covariant derivative on the vector
bundle E = Σ⊕ Σ.
• Special member: s = 0 −→ ∇0,E ≡ ∇E.
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Thm.1 [Chr’15] Let (Mn, g, T ) (n  3) a connected Riemannian spin manifold with ∇cT = 0.
Then, any twistor spinor with torsion ϕ ∈ Ker(P s) satisfies the equation

∇s,E
X

(
ϕ⊕Ds(ϕ)

)
= 0.

Conversely, if (ϕ ⊕ ψ) ∈ Γ(E) is ∇s,E-parallel, then ϕ is a twistor spinor with torsion such that
Ds(ϕ) = ψ.

Cor. Let (Mn, g, T ) (n  3) a connected Riemannian spin manifold with ∇cT = 0. Then,

a) dim Ker(P s) ¬ 2[n2 ]+1 = 2(dim ∆n).

b) If ϕ and Ds(ϕ) vanish at some point p ∈M and ϕ ∈ Ker(P s), then ϕ ≡ 0.
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Prop.1 [Chr.’15] Let (Mn, g, T ) (n  3) be a connected Riemannian spin manifold with ∇cT = 0.
Then, any zero point of 0 6= ϕ ∈ Ker(P s) is isolated, i.e. the zero-set of ϕ is discrete.

Hints: Compute the Hessian Hess∇s of the function |ϕ|2 in p ∈M .

Hess∇s

p (|ϕ|2)(X, Y ) = 2
n2

[(
Y ·Ds(ϕ), X ·Ds(ϕ)

)]
p

= 2
n2(|Ds(ϕ)|2)pgp(X, Y ).

• So, if (Ds(ϕ))p 6= 0, then p is a non-degenerate critical point of |ϕ|2 and thus an isolated zero
point of ϕ. If (Ds(ϕ))p = 0, then ϕ must be trivial.
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∇c-parallel spinors and characteristic spinors
• ∇c-parallel spinor: ∇cϕ = 0
• characteristic, or ∇c-harmonic spinor: Dc(ϕ) = 0

Known results (1) [Friedr.-Iv.’01] Let ϕ0 ∈ Ker(∇c). Then,

Scalc ϕ0 = −2dT · ϕ0 = −4σT · ϕ0, (∗)

Ricc(X) · ϕ0 = 1
2
(
XydT +∇c

XT
)
· ϕ0.

(2) The scalar curvatures Scalc, Scalg are constant. If in addition ϕ ∈ Σγ for some γ 6= 0, i.e.
T · ϕ = γϕ, ⇒

Scalg = 2γ2 − 1
2
‖T‖2, Scalc = 2(γ2 − ‖T‖2), Ricc(X) = 1

2
(
XydT

)
· ϕ0 = (XyσT ) · ϕ0.

(3) In the presence of a ∇c-parallel spinor ϕ ∈ Σγ [Agric.-Becker-B.-Kim. ’12]

βtw(γ) ¬ βuniv(γ).
For n ¬ 8 [Agric.-Becker-B.-Kim. ’12]

0 ¬ 2n‖T‖2 + (n− 9)γ2, Scalg ¬ 9(n− 1)
2(9− n)

‖T‖2.

• equality case: iff universal estimate coincides with twistorial estimate.
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• It is an interesting question to check if these twistor spinors with torsion are also some kind of
Killing spinors and what the geometric inclusions are when the two estimates coincide, if any.

=⇒ In general, the twistor equation with torsion cannot be reduced to a Killing spinor equation

• Do there exist exceptions? YES!

• n = 3 ⇒ (S3, gcan) (new)

• n = 6 ⇒ nearly Kähler mnfds. [Agric.-Becker-B.-Kim. ’12]

• n = 7 ⇒ nearly parallel G2-mnfds. (new)
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Prop.2 [Chr.’15] Let (Mn, g,∇c) be a compact connected Riemannian spin manifold with ∇cT = 0
and positive scalar curvature, carrying a non-trivial spinor field 0 6= ϕ0 ∈ Γ(Σ) such that

∇cϕ0 = 0, T · ϕ0 = γϕ0.

Then, ϕ0 is a real Killing spinor (with respect to g) if and only if

γ2 = 4n
9(n− 1)

Scalg . (†)

If this is the case, then the Killing number is given by κ := 3γ/4n and

(XyT ) · ϕ0 + 3γ
nX · ϕ0 = 0, ∀ X ∈ Γ(TM).

• For n ¬ 8, the condition (†) is equivalent to

γ2 = 2n
9− n

‖T‖2, or Scalg = 9(n− 1)
2(9− n)

‖T‖2.

If this is the case, then dT · ϕ0 = −3γ2(n−3)
2n ϕ0.
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Hints: (1) Since

Dc ≡ D1/4 = Dg + 3
4
T

and ϕ0 ∈ Σγ is ∇c-parallel, it follows that ϕ0 is an eigenspinor of the Riemannian Dirac operator Dg

Dg(ϕ0) = −3γ
4
ϕ0.

(2) [Friedrich ’80] Given a compact Riemannian spin manifold with positive scalar curvature, if ϕ0 ∈
Γ(Σ) is an eigenspinor of Dg with one of the eigenvalues

±1
2

√√√√√n Scalgmin
n− 1

,

then ϕ0 is a real Killing spinor with corresponding Killing number

κ := ∓1
2

√√√√√√ Scalgmin
n(n− 1)

.

(3) Since ϕ ∈ Ker(∇c) := {ϕ ∈ Γ(Σγ) ⊂ Γ(Σ) : ∇cϕ = 0}, Scalg is constant
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Cor. Let ϕ ∈ Ker(∇c). If βuniv(γ)=βtw(γ) , then ϕ is a real Killing spinor, in particular ϕ ∈
K(Mn, g) 3γ

4n
∩ Γ(Σγ).

Question: What about the converse? YES

————————————–//————————————

Observe that on a compact connected Riemannian spin manifold (Mn, g, T ) with positive scalar
curvature

• real Killing spinors with Killing number κ = 3γ
4n,

• ∇c-parallel spinors lying in Σγ, or

• characteristic spinors lying in Σγ,
if existent, they are sharing a common property:

They are all eigenspinors of the Riemannian Dirac operator with the same eigenvalue −3γ
4 6= 0,

where 0 6= γ ∈ Spec(T ) is a T -eigenvalue.
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Examples.

(1) 6-dimensional nearly Kähler manifolds

[Gray’70], [Friedr.-Grunewald ’86], [Friedr.-Ivanov.’01]

Consider a 6-dimensional nearly Kähler manifold, i.e. an almost Hermitan manifold (M6, g, J)
such that

(∇g
XJ)X = 0.

• There exists unique characteristic connection ∇c with parallel skew-torsion, given by

T (X, Y ) := (∇g
XJ)JY.

−→ There exist two ∇c-parallel spinors ϕ± lying in Σγ with γ = ±2‖T‖.

• Both are real Killing spinors with Killing number given by κ := ±‖T‖/4.

Indeed,

Ricg = 5
4
‖T‖2, Scalg = 15

2
‖T‖2

Notice that Scalg coincides with 9(n−1)
4n γ2 = 9(n−1)

2(9−n)‖T‖
2. Thus, the spinors ϕ± must be real Killing

spinors with κ = 3γ/4n = ±‖T‖/4. In particular, dT · ϕ± = −1
2 Scalc ·ϕ± = −3γ2(n−3)

2n ϕ±, i.e.
dT · ϕ± = −3‖T‖2ϕ±.
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(2) Nearly parallel G2-manifolds

[Fr.-Kath.-Mor.-Sem.’97], [Friedr.-Iv.’01]

• G2 14-dimensional compact simple Lie group can be viewed as;

=⇒ the stabiliser of a generic 3-form ω ∈ ∧3(R7)

ω := e127 + e135 − e146 − e236 − e245 − e347 + e567.

=⇒ or the subgroup of Spin(7) preserving the unit spinor ψ0 = (1, 0, . . . , 0)t ∈ S(∆7) ⊂ ∆7 := R8

G2 = {A ∈ GLnR : ω = A∗ω} = {g ∈ Spin(7) : gψ0 = ψ0}.
• Under the action of G2,

∆7 = Rψ0 ⊕ {X · ψ0 : X ∈ R7}.
In particular ω and ψ0 induce equivalent data:

ω(X, Y, Z) = 〈X · Y · Z · ψ0, ψ0〉.

Def. A G2-structure on M7 is a G2-reduction of the frame bundle SO(TM7).
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Def. A G2-structure on M7 is said to be nearly parallel if the associated spinor ϕ is a real
Killing spinor. This is equivalent to say that dω = −τ0 ∗ ω for some real constant τ0 6= 0.

• ∃! characteristic connection ∇c with parallel skew-torsion T given by

T := 1
6

(dω, ∗ω) · ω = −τ0
6
ω, ‖T‖2 = 7

36
τ 2

0 ,

−→ There is a unique ∇c-parallel spinor ϕ0 with γ = −
√

7‖T‖. [Friedrich-Ivanov ’01]

• ϕ0 is a real Killing spinor with κ = − 3
4
√

7‖T‖.

Ricg = 27
14
‖T‖2 Id, Scalg = 27

2
‖T‖2

Indeed, Scalg coincides with 9(n−1)
4n γ2 = 9(n−1)

2(9−n)‖T‖
2. Thus, ϕ0 must be a Killing spinor with

κ = 3γ/4n = − 3
4
√

7‖T‖. In particular, dT · ϕ0 = −3γ2(n−3)
2n ϕ0, i.e. dT · ϕ0 = −6‖T‖2ϕ0.
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Lem.3 Let 0 6= γ ∈ Spec(T ) be a real non-zero T -eigenvalue. Then, a real Killing spinor ϕ ∈
K(Mn, g) 3γ

4n
is characteristic i.e. Dc(ϕ) = 0, iff ϕ ∈ Σγ.

Hints: Dc(ϕ) = Dg(ϕ) + 3
4T · ϕ = −3γ

4 ϕ + 3
4T · ϕ.

• One cannot claim that a Killing spinor with κ = 3γ/4n is ∇c-parallel, even if it is characteristic.

• With the aim to construct the desired one-to-one correspondence between spinor fields in Ker
(
∇c

)
and

Ker
(
Dc) := {ϕ ∈ Γ(Σγ) ⊂ Γ(Σ) : Dc(ϕ) = 0},

the eigenvalues of the endomorphism dT + 1
2 Scalc on Σ must be non-negative [Friedr.-Iv.’01].

Thm.2 [Chr.’15] Let (Mn, g, T ) be compact connected Riemannian spin manifold (Mn, g, T ),
with ∇cT = 0 and positive scalar curvature given by Scalg = 9(n−1)γ2

4n for some constant 0 6=

γ ∈ Spec(T ). If the symmetric endomorphism dT + 1
2

[
9(n−1)

4n γ2 − 3
2‖T‖

2
]

acts on Σ with non-

negative eigenvalues, then the following classes of spinors, if existent, coincide

Ker
(
∇c) ∼= Ker

(
Dc) ∼= ⊕

γ∈Spec(T )

[
Γ(Σγ) ∩ K(Mn, g) 3γ

4n

]
.
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Extension to ∇c-parallel TsT and KsT

Thm.3 [Chr.’15] Let (Mn, g, T ) be a compact connected Riemannian spin manifold with ∇cT = 0
and assume that ϕ ∈ Γ(Σ) is a spinor field such that ∇cϕ = 0, where ∇c = ∇g + 1

2T is the
characteristic connection. Let γ ∈ R\{0} be a non-zero real number. Then, the following conditions
are equivalent:

(a) ϕ ∈ Γ(Σγ) ∩ Ker(P s) := Ker(P s
∣∣∣Σγ

) w.r.t. the family {∇s : s ∈ R\{1/4}},

(b) ϕ ∈ Ks(M, g)ζ w.r.t. the family {∇s : s ∈ R\{0, 1/4}} with ζ = 3(1− 4s)γ/4n,

(c) ϕ ∈ K(M, g)κ with κ = 3γ/4n.

Hints: ∇s
Xϕ = ∇c

Xϕ + 4s−1
4 (XyT ) · ϕ and Ds(ϕ) = Dc(ϕ) + 3(4s−1)

4 T · ϕ. Thus

∇c
Xϕ + 4s−1

4 (XyT ) · ϕ + 1
nX ·

{
Dc(ϕ) + 3(4s−1)

4 T · ϕ
}

= 0.

If ϕ ∈ Ker(∇c) ∩ Ker(P s
∣∣∣Σγ

), then

(XyT ) · ϕ + 3γ
n
X · ϕ = 0.
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Cor. If ϕ ∈ Ker(∇c) is a real Killing spinor with κ = 3γ/4n then βuniv(γ)=βtw(γ) identically.

Hints: If ϕ ∈ K(Mn, g) 3γ
4n
, then Scalg = 9(n−1)

4n γ2 is constant; because ϕ ∈ Σγ is ∇c-parallel and the
scalar curvature satisfies the desired formula, for n ¬ 8 we also have ‖T‖2 = 2(9−n)

9(n−1) Scalg. Moreover,
Thm.3 tell us that this is also a TsT for some s 6= 1/4; thus one may assume without loss of generality
that s = (n− 1)/4(n− 3) 6= 1/4. Hence,

βtw(γ) =
n
[
9(n− 3)2 + (n− 5)(9− n) + 4n(4− n)

]
36(n− 1)(n− 3)2 Scalg = n

9(n− 1) Scalg = γ2

4 = βuniv(γ)

Lem.4 Let 0 6= γ ∈ Spec(T ) be a non-zero real T -eigenvalue. Then the following hold:

(a) A Killing spinor with torsion ϕ ∈ Ks(M, g) 3γ(1−4s)
4n

for some s 6= 0, 1/4 is characteristic, if and only
ϕ ∈ Σγ.

(b) A twistor spinor with torsion ϕ ∈ Ker
(
P s|Σγ

)
for some s 6= 0, 1/4 is characteristic, if and only

if ϕ is a Ds-eigenspinor with eigenvalue −3γ(1−4s)
4 i.e. ϕ ∈ Ks(M, g) 3γ(1−4s)

4n
∩ Γ(Σγ). In particular,

for s = 0, a twistor spinor ϕ ∈ Ker
(
P g|Σγ

)
is characteristic, if and only if Dg(ϕ) = −3γ

4 ϕ, i.e.
ϕ ∈ K(M, g) 3γ

4n
∩ Γ(Σγ).
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Thm.4 [Chr.’15] Let (Mn, g, T ) be compact connected Riemannian spin manifold (Mn, g, T ), with
∇cT = 0 and positive scalar curvature given by Scalg = 9(n−1)γ2

4n for some constant 0 6= γ ∈

Spec(T ). If the symmetric endomorphism dT + 1
2

[
9(n−1)

4n γ2 − 3
2‖T‖

2
]

acts on Σ with non-negative

eigenvalues, then the following classes of spinors, if existent, coincide

Ker(∇c) ∼=
⊕

γ∈Spec (T )

[
Γ(Σγ) ∩ K(M, g) 3γ

4n

]

∼=
⊕

γ∈Spec (T )

[
Γ(Σγ) ∩ Ks(M, g) 3(1−4s)γ

4n

]

∼=
⊕

γ∈Spec (T )

[
Ker(P s

∣∣∣Σγ
) ∩ Ker

(
Dc)].

Here, the parameter s takes values in R\{0, 1/4} for the third set, and for the final set it is
s ∈ R\{1/4}.
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Representative examples

Thm.5 [Chr.’15] On a 6-dimensional nearly Kähler manifold (M6, g, J) endowed with its
characteristic connection ∇c, the following classes of spinor fields coincide:

(1) TsT w.r.t. the family {∇s : s ∈ R\{1/4}}, lying in Σ±2‖T‖,

(2) KsT w.r.t the family {∇s : s ∈ R\{0, 1/4}}, with ζ := ∓(4s−1)
4 ‖T‖,

(3) Riemannian Killing spinors,

(4) ∇c-parallel spinors.

• Known for s = 5/12 = (n−1)
4(n−3) by [Agricola.-Becker-B.-Kim’12].

Thm.6 [Chr.’15] On a nearly-parallel G2-manifold (M7, g, ω) endowed with its characteristic
connection ∇c, the following classes of spinor fields coincide:

(1) TsT w.r.t. the family {∇s : s ∈ R\{1/4}}, lying in Σ− 7τ0
6
≡ Σ−√7‖T‖,

(2) KsT w.r.t. the family {∇s : s ∈ R\{0, 1/4}}, with ζ := (4s−1)τ0
8 = 3(4s−1)‖T‖

4
√

7 ,

(3) Riemannian Killing spinors,

(4) ∇c-parallel spinors.
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Strong geometric constraints

Prop.3 [Chr.’15] Assume that ∇cT = 0 and that (Mn, g, T ) is complete and admits a ∇c-parallel
spinor 0 6= ϕ ∈ Σγ (R 3 γ 6= 0) lying in the kernel Ker(P s) for some s 6= 1/4. Then, for any s ∈ R
the following hold

Rics(X) · ϕ = 6γ2

n2

[6(n− 1)(1− 4s)2 + 96s(1− 4s) + 16s(3− 4s)(n− 3)
16

]
X · ϕ,

Scals ϕ = 6γ2

n

[6(n− 1)(1− 4s)2 + 96s(1− 4s) + 16s(3− 4s)(n− 3)
16

]
ϕ.

(a) (Mn, g) is a compact Einstein manifold with constant positive scalar curvature Scalg = 9(n−1)γ2

4n .

(b) For any n > 3, (Mn, g, T ) is a strict ∇c-Einstein manifold with parallel torsion and constant
scalar curvature Scalc = 3(n−3)γ2

n . For n = 3, (M3, g, T ) is Ricc-flat.

(c) (Mn, g, T ) is ∇s-Einstein (with non-parallel torsion) for any s ∈ R\{0, 1/4} i.e.

Rics = Scals
n g, ∀s ∈ R\{0, 1/4}.
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Remarks : (1) The conditions ∇cϕ = 0 and ϕ ∈ Ker(P s
∣∣∣Σγ

) for some s 6= 1/4, can be replaced
by either

• ∇cϕ = 0 and ϕ ∈ Ks(M, g) 3γ(1−4s)
4n

for some s 6= 0, 1/4, or

• ∇cϕ = 0 and ϕ ∈ K(M, g) 3γ
4n

!!!

(2)

Ricg(X) · ϕ = 4κ2(n− 1)X · ϕ = 9(n− 1)γ2

4n2 X · ϕ,

Scalg = 4κ2n(n− 1) = 9(n− 1)γ2

4n
.

Thus (Mn, g) must be Einstein with positive scalar curvature (compactness by Myers’s theorem).

(3) We can present a different proof for the original Einstein condition, without using the fact that
such a spinor must be a real Killing spinor. For this we provide first the existence of a ∇c-Einstein
structure (and its explicit form), and then we use this fact to describe the original Einstein condition.

30



Hints: By assumption ∇cϕ = 0 and ϕ ∈ Σγ. Thus

(1) Ricc(X) · ϕ = 1
2(XydT ) · ϕ = (XyσT ) · ϕ.

(2) −2(XyσT ) = 1
2(T 2 ·X −X · T 2) = (XyT ) · T − T · (XyT ) ⇒

Ricc(X) · ϕ = −1
2

[
(XyT ) · T − T · (XyT )

]
· ϕ. (♣)

(3) T · ϕ = γϕ, (XyT ) · ϕ + 3γ
nX · ϕ = 0. Altogether:

Ricc(X) · ϕ = 3(n− 3)γ2

n2 X · ϕ.

−→ The original Einstein condition; we use the formula: [A.-Becker-B.-Kim’12]

∑
i
ei ·Rg(X, ei)ϕ = ∑

i
ei ·Rc(X, ei)ϕ−

6
16

(XyσT ) · ϕ + 1
8
∑
i
T (X, ei) · (eiyT ) · ϕ.

Notice that ∑i ei ·Rg(X, ei)ϕ = −1
2 Ricg(X) · ϕ.

(4) For s 6= 0, 1/4 we apply the formulas (induced by our Lemma 1 – see also [Becker-Bender’s Phd’12])

Rics(X) · ϕ = 4(n− 1)ζ2X · ϕ− 16sζ(XyT ) · ϕ + 2s(3− 4s)(XyσT ) · ϕ,
Scals ϕ = 4n(n− 1)ζ2ϕ + 48sζT · ϕ− 8s(3− 4s)σT · ϕ.
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Examples
• Consider a nearly Kähler manifold (M6, g, J). Recall that there exist two ∇c-parallel spinors ϕ±
with γ = ±2‖T‖ which are both TsT for some s 6= 1/4. Hence,

Rics(X) · ϕ± = (5−16s2)
4 ‖T‖2X · ϕ± = (5−16s2)

2 τ0X · ϕ±, ∀ s ∈ R

Ricc(X) · ϕ± = 3(n− 3)γ2

n2 X · ϕ± ⇒ Ricc(X) · ϕ± = ‖T‖2X · ϕ±,

Ricg(X) · ϕ± = 9(n− 1)γ2

4n2 X · ϕ± ⇒ Ricg(X) · ϕ± = 5
4
‖T‖2 · ϕ±.

....by the twistor equation: (XyT ) · ϕ± = ∓‖T‖X · ϕ±.

• A direct computation shows that :[
(XyT ) · T − T · (XyT )

]
· ϕ± = −2‖T‖2X · ϕ±.

and the results follows by (♣).
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• Consider a proper nearly parallel G2-manifold (M7, g, ω). Recall that there is a unique ∇c-parallel
spinor field ϕ0 with γ = −

√
7‖T‖. Thus

Rics(X) · ϕ0 = 6(9−16s2)
28 ‖T‖2X · ϕ0 = (9−16s2)

24 τ 2
0X · ϕ0, ∀ s ∈ R ,

in particular

Ricc(X) · ϕ0 = 12
7
‖T‖2X · ϕ0, Ricg(X) · ϕ0 = 27

14
‖T‖2X · ϕ0.

• In a line with nearly Kähler manifolds in dimension 6, we can compute Ricc in a direct way, since

(XyT ) · ϕ0 = τ0
2
X · ϕ0 = 3‖T‖√

7
X · ϕ0.

Thus [
(XyT ) · T − T · (XyT )

]
· ϕ0 = −24

7
‖T‖2X · ϕ0.

and the result follows by (♣).
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Conclusions

• We deduce that on a triple (Mn, g, T ) with ∇cT = 0, the existence of a spinor field ϕ ∈ Γ(Σ)
satisfying simultaneously the equations

∇c
Xϕ = 0, ∇s

Xϕ = ζX · ϕ,

for some real numbers s 6= 0, 1/4, ζ 6= 0, where ∇s = ∇g + 2sT , imposes much harder geometric
restrictions than the original Killing spinor equation, namely:

Type of Killing spinors Geometric conclusions

Killing spinors with Killing number κ ∈ R\{0} • Ricg = 4κ2(n− 1)g, Scalg = 4κ2n(n− 1)

∇c-parallel KsT w.r.t. ∇s = ∇g + 2sT • ϕ is a real Killing spinor: T · ϕ = γ · ϕ 6= 0
with Killing number ζ = 3(1−4s)γ

n 6= 0 • Rics = Scals
n g ∀ s ∈ R, in particular :

for some R 3 γ 6= 0, R 3 s 6= 0, 1/4 − Ricg = 9(n−1)γ2

4n2 g, Scalg = 9(n−1)γ2

4n
− Ricc = 3(n−3)γ2

n2 g, Scalc = 3(n−3)γ2

n

Remark : One has to stress that this is not the case in general; there exist KsT which are not real
Killing spinors, and thus manifolds which are not necessarily Einstein can be endowed with them, e.g.
the Heisenberg group. [Becker-Bender’s Phd’12]

• The Killing/twistor spinor equation with torsion behave very different than their Riemannian
analogues, depending on the geometry!
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...we need the classification of simply connected Riemannian manifolds admitting real KS

=⇒ dimensions 4 ¬ n ¬ 8 Th. Friedrich’s school (Berlin, end of 80s).

→ Any Einstein-Sasakian manifold M2m+1 admits real KS [Friedr.-Kath’90]

• n = 3, 4, 8 ⇒ Mn = Sn. [Friedrich’81], [Hijazi’81]

• n = 5 ⇒ M5 Einstein-Sasakian manifold. [Friedrich-Kath’89]

• n = 6 ⇒ M6 nearly Kähler manifold. [Friedr.-Grunewald ’85-’90]

• n = 7 ⇒ M7 nearly parallel G2-manifold. [Friedr.-Kath’90], [F.K.M.S.’97]

• in odd dimensions 4m + 1  9, 4m + 3  11 only spheres, Einstein-Sasakian manifolds and
3-Sasakian manifolds can admit real KS [Bär 93]

=⇒ Notice that: An Einstein-Sasaki manifoldM2m+1 (2m+1  5) is never∇c-Einstein. [Agricola-Ferreira’12]
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Thm.7 [Chr.’15] Let (Mn, g, T ) be a compact connected Riemannian spin manifold with ∇cT = 0,
endowed with a spinor field satisfying

∇c
Xϕ = 0, ∇s

Xϕ = ζX · ϕ, for some real numbers s 6= 0, 1/4, and ζ 6= 0,

with respect to the same Riemannian metric g. Then,

• n = 3 ⇒ M3 ∼= S3 is isometric to the 3-sphere (S3, gcan)

• n = 6 ⇒ M6 is isometric to a strict nearly Kähler manifold

• n = 7 ⇒ M7 is isometric to a nearly parallel G2-manifold
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