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Generalized complex geometry — 3 definitions

Definition (Definition 1)

Given (M,H), H ∈ Ω3
cl(M) a GCS is

a complex structure J : T ⊕ T∗ −→ T ⊕ T∗, orthogonal
with respect to the natural paring and integrable with
respect to the Courant bracket.
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Generalized complex geometry — 3 definitions

Definition (Definition 2)

Given (M,H), H ∈ Ω3
cl(M) a GCS is

A complex Lagrangian subbundle L ⊂ TC ⊕ T∗C s.t.
L ∩ L = {0} & L is involutive;
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Generalized complex geometry — 3 definitions

Definition (Definition 3)

Given (M,H), H ∈ Ω3
cl(M) a GCS is

A complex line bundle K ⊂ Ω•(M;C) generated pointwise
by a pure spinor

ρ = eB+iω ∧ Ω

for which
Ω ∧ Ω ∧ ωn−k 6= 0

and
dHρ = v · ρ,

for any local section ρ ∈ Γ(K\{0}), for some v ∈ Γ(T ⊕ T∗).
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First Examples

Example

A complex structure is a GCS on (M, 0): take K = ∧n,0T∗M.

Example

A symplectic structure is a GCS on (M, 0): take K = 〈eiω〉.
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First Examples

Example

A holomorphic Poisson structure π ∈ Γ(∧2,0TM) is a GCS on
(M, 0): take K = eπ ∧n,0 T∗M.
If M is holomorphic symplectic, one can deform complex
structures into symplectic structures.

Example

In C2 take the bivector z∂/∂z ∧ ∂/∂w. This gives the canonical
bundle

K = 〈z + dz ∧ dw〉.
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Questions

Question
What do they look like?

Question
Are there relevant subtypes?

Question
What are their differential topological properties?
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Outline of Topics
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Generalized complex geometry

Definition (Definition 2)

Given (M,H), H ∈ Ω3
cl(M) a GCS is

A complex Lagrangian subbundle L ⊂ TC ⊕ T∗C s.t.
L ∩ L = {0} & L is involutive;

L is a Lie algebroid⇒ de Rham theory on Γ(∧•L∗) = Γ(∧•L).
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Generalized complex geometry

Definition (Definition 3)

Given (M,H), H ∈ Ω3
cl(M) a GCS is

A complex line bundle K ⊂ Ω•(M;C) generated pointwise
by a pure spinor

ρ = eB+iω ∧ Ω

for which
Ω ∧ Ω ∧ ωn−k 6= 0

and
dHρ = v · ρ,

for any local section ρ ∈ Γ(K\{0}), for some v ∈ Γ(T ⊕ T∗).
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Generalized complex geometry

Definition (Definition 3)

Given (M,H), H ∈ Ω3
cl(M) a GCS is

A complex line bundle K ⊂ Ω•(M;C) generated pointwise
by a pure spinor

ρ = eB+iω ∧ Ω

for which
Ω ∧ Ω ∧ ωn−k 6= 0

and
dHρ = v · ρ,

for any local section ρ ∈ Γ(K\{0}), for some v ∈ Γ(L).
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Generalized complex geometry

K is the canonical bundle;
type of J = deg(Ω);
v ∈ Γ(L) is the modular field;
J is generalized Calabi–Yau if K has a nowhere vanishing
dH-closed section.
πT ◦ J (T∗) is an integrable singular distribution (with
symplectic leaves).
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Generalized complex geometry — Local structure

Theorem (Gualtieri 2003)
If the type is locally constant, the GCS is locally equivalent to the
product of a complex and a symplectic structure.

Theorem (Bailey 2011)
Any GCS is locally equivalent to a product of a symplectic and a
holomorphic Poisson structure.

What do GCS look like? ; what do holomorphic Poisson
structures look like?
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Generalized Calabi–Yau geometry

Question
Is J GCY?

1. K has a nowhere vanishing section ρ⇔ c1(K) = 0;
2. ρ; v (modular field). There is a closed section⇔

[v] = 0 ∈ H1(L);
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Generalized Calabi–Yau geometry

Question
Is J GCY?

3. If J has constant type,

ρ = eB+iω ∧ Ω

then dΩ = 0 and can ask whether dHeB+iω = 0.

{0} −→ ker(Ω∧)i −→ Ωi(M;C)
Ω∧−→ I i+k

Ω −→ {0}

Twitsting class

δρ ; [H + d(B + iω)] ∈ H3(ker(Ω∧)).
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Type 1 GCY structures

Example (Kodaira–Thurston manifold)
Compact manifold corresponding to the Lie algebra

n = 〈e1, e2, e3, e4 : [e1, e2] = e3〉.

Type 1 GCY given by

ee3∧e4 ∧ (e1 + ie2).

Ω ∧ Ω = e1 ∧ e2 = de3 ⇒ Twisting class does not vanish.
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Type 1 GCY structures

Theorem (Cavalcanti–Gualtieri)

Let D2n be a compact, connected type 1 GCY. Then the following hold:

1 There is a surjective submersion π : D −→ T2, hence b1(D) ≥ 2
and χ(D) = 0.

2 If D has a compact leaf, then fibers of π are the symplectic leaves
of J .

3 If the twisting class vanishes,
the structure can be deformed into one with a compact leaf;
there are classes a, b ∈ H1(D) and c ∈ H2(D) such that
abcn−1 6= 0. In particular bi(D) ≥ 2 for 0 < i < 2n.
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Type 1 GCY structures

Theorem (Cavalcanti–Gualtieri)

Let π : D −→ T2 be a fibration of a compact, connected, oriented
4-manifold over the torus. Then D admits a type 1 GCY structure for
which the fibers of π are the symplectic leaves of J .
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Type 1 GCY structures

Relevant steps.
1 Oriented surface fibration⇒ symplectic fibration;
2 If there is a class c ∈ H2(D) with c|F = [ωF], then it is

groovy (Thurston);
3 If the genus of the fiber is not 1, there is such a class c;
4 Torus bundles over the torus have been classified

(Sakamoto–Fukuhara, Ue, Geiges).
Only 2 do not satisfy Thurston’s condition:

Kodaira–Thurston;
“the other” nilmanifold.
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Stable structures

The anticanonical bundle of J has a natural section:

s(ρ) = ρ0.

J is stable if s has only nondegenerate zeros.
i.e., if ρ is a nonvanishing section of K then dρ0 6= 0 along the
locus [ρ0 = 0].
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Stable structures

Theorem (Cavalcanti–Gualtieri, Goto–Hayano)
Logarithmic transform on a symplectic 4-manifold along a symplectic
torus with trivial normal bundle produces stable structures.
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Stable structures

Example (Cavalcanti–Gualtieri)

n#CP2#mCP2

has a stable gcs if and only if it has an almost cplx str.

Theorem (Torres)

If M4 and N4 have sympletic tori with trivial normal bundle,

M#(S2 × S2)#N M#CP2#CP2#N

have stable generalized complex structure.
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Stable structures

Keep in mind

Theorem (Iwase, Baykur–Sunukjian)
Every compact, simply connected 4-manifold is obtained from
connected sums of CP2, CP2 and S1 × S3 by means of logarithmic
transforms along disjoint tori.
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Stable structures

Question
What does the singular locus look like?

Bailey’s theorem⇒ there are coordinates in R2n−4 × C2 for
which

ρ = eiω0 ∧ (z + dz ∧ dw) ∼ eiω0+d log z∧dw.
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Stable structures
Induce data on the singular locus, D:

D is the zero locus of s, the anticanonical section⇒
codimension 2 submanifold;
The residue of ρ gives D a type 1 GCY structure:

eiω0 ∧ (z + dz ∧ dw) ; eiωdw

adjunction formula:

ds : N ∗ ⊗ K∗|D ∼= 1,

N ∗ ∼= K|D gives N a generalized holomorphic structure.
twisting class of D ∼ Chern class of K:

c1(K) ∧ Ω|D = twisting class of D.
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Stable structures

Proposition (Cavalcanti–Gualtieri)
Let D be a type 1 GCY and let N be a generalized holomorphic vector
bundle over D. Then the total space of N admits a stable structure
whose singular locus is the zero section.
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Stable structures

Theorem (Cavalcanti–Gualtieri)
Let M be a stable GC manifold and let D be a compact component of
the singular locus. Then a neighbourhood of D determines and is
determined by the induced GCY on D and the holomorphic structure
of N ∗.
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Stable structures — Properties of the singular locus

The vector field ∂/∂w preserves the structure

⇒

The sphere bundle of N inherits a co-symplectic structure:
σ = ω|S1N and α = ∂/∂r · ω such that

dσ = 0 = dα and σn−1 ∧ α 6= 0.

In 4-d this the pair (α, σ) gives rise to a taut foliation.
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Stable structures — 4 d

Theorem (Cavalcanti–Gualtieri)

Let M4 be a compact stable generalized complex manifold whose
anticanonical divisor has connected components D1, . . . ,Dn. Then
for each i there is a tubular neighbourhood Ui of Di, a symplectic
manifold with boundary (Xi, ωi) and an orientation reversing
diffeomorphism of coisotropic submanifolds ϕi : ∂Xi

∼=−→ ∂Ui, so that

M̃ = M\U ∪ϕ X (1)

is a symplectic manifold.
Further, Xi can be chosen so that b+(Xi) > 1 and the restriction map
H2(Xi) −→ H2(∂Xi) is surjective.
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Stable structures — 4 d

Proof.
Since the boundary of a tubular nhood of D has a taut foliation,
the result follows from work of Elisashberg ad Etnyre on
symplectic fillings of taut foliations.

Theorem (Kronheimer–Mrowka)
Let Y be a closed 3-manifold with a smooth taut foliation (F , σ), then
there exists a closed symplectic 4-manifold (X, ω) containing Y as a
separating manifold for which ω|Y = σ.
Furthermore if Y 6= S1 × S2, we can arrange so that the map
H2(X;R) −→ H2(Y;R) is surjective and each component of X\Y has
b+

2 > 1.
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Stable structures — 4 d

Corollary

An embedded surface Σ ↪→M4 of a stable GCM disjoint from the
singular locus must satisfy the adjunction inequality: if Σ · Σ ≥ 0,
then

2g− 2 ≥ |K · Σ|+ Σ · Σ.

In particular, there are no spheres with nonnegative
self-intersection that do not touch the singular locus.
N.B.: There are many (Lagrangian) spheres of zero
self-intersection which cross the singular locus.
N.B. The singular locus is often a torus of positive self
intersection.
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