Stable generalized complex structures

Gil Cavalcanti joint work with Gualtieri

Utrecht University

October 2015 Bedlewo

Stable GC structures

Cavalcanti

Generalized complex geometry — 3 definitions

Definition (Definition 1)

Given (M, H), $H \in \Omega^3_{cl}(M)$ a GCS is

a complex structure *J* : *T* ⊕ *T*^{*} → *T* ⊕ *T*^{*}, orthogonal with respect to the natural paring and integrable with respect to the Courant bracket.

Generalized complex geometry — 3 definitions

Definition (Definition 2)

Given (M, H), $H \in \Omega^3_{cl}(M)$ a GCS is

• A complex Lagrangian subbundle $L \subset T_{\mathbb{C}} \oplus T_{\mathbb{C}}^*$ s.t. $L \cap \overline{L} = \{0\} \& L \text{ is involutive;}$

Generalized complex geometry — 3 definitions

Definition (Definition 3)

Given (M, H), $H \in \Omega^3_{cl}(M)$ a GCS is

 A complex line bundle K ⊂ Ω[•](M; C) generated pointwise by a pure spinor

$$\rho = e^{B + i\omega} \wedge \Omega$$

for which

$$\Omega \wedge \overline{\Omega} \wedge \omega^{n-k} \neq 0$$

and

$$d^H \rho = v \cdot \rho,$$

for any local section $\rho \in \Gamma(K \setminus \{0\})$, for some $v \in \Gamma(T \oplus T^*)$.

First Examples

Example

A complex structure is a GCS on (M, 0): take $K = \wedge^{n,0}T^*M$.

Example

A symplectic structure is a GCS on (M, 0): take $K = \langle e^{i\omega} \rangle$.

Cavalcanti

First Examples

Example

A holomorphic Poisson structure $\pi \in \Gamma(\wedge^{2,0}TM)$ is a GCS on (M, 0): take $K = e^{\pi} \wedge^{n,0} T^*M$. If *M* is holomorphic symplectic, one can deform complex structures into symplectic structures.

Example

In \mathbb{C}^2 take the bivector $z\partial/\partial z \wedge \partial/\partial w$. This gives the canonical bundle

$$K = \langle z + dz \wedge dw \rangle.$$

Questions

Question

What do they look like?

Question

Are there relevant subtypes?

Question

What are their differential topological properties?

Outline of Topics

Stable GC structures

Cavalcanti

Definition (Definition 2)

Given (M, H), $H \in \Omega^3_{cl}(M)$ a GCS is

• A complex Lagrangian subbundle $L \subset T_{\mathbb{C}} \oplus T_{\mathbb{C}}^*$ s.t. $L \cap \overline{L} = \{0\} \& L \text{ is involutive;}$

L is a Lie algebroid \Rightarrow de Rham theory on $\Gamma(\wedge^{\bullet}L^*) = \Gamma(\wedge^{\bullet}\overline{L})$.

Definition (Definition 3)

Given (M, H), $H \in \Omega^3_{cl}(M)$ a GCS is

 A complex line bundle K ⊂ Ω[•](M; C) generated pointwise by a pure spinor

$$\rho = e^{B + i\omega} \wedge \Omega$$

for which

$$\Omega \wedge \overline{\Omega} \wedge \omega^{n-k} \neq 0$$

and

$$d^H \rho = v \cdot \rho,$$

for any local section $\rho \in \Gamma(K \setminus \{0\})$, for some $v \in \Gamma(T \oplus T^*)$.

Definition (Definition 3)

Given (M, H), $H \in \Omega^3_{cl}(M)$ a GCS is

 A complex line bundle K ⊂ Ω[•](M; C) generated pointwise by a pure spinor

$$\rho = e^{B + i\omega} \wedge \Omega$$

for which

$$\Omega \wedge \overline{\Omega} \wedge \omega^{n-k} \neq 0$$

and

$$d^H \rho = v \cdot \rho,$$

for any local section $\rho \in \Gamma(K \setminus \{0\})$, for some $v \in \Gamma(\overline{L})$.

- *K* is the *canonical bundle*;
- type of $\mathcal{J} = \deg(\Omega)$;
- $v \in \Gamma(\overline{L})$ is the modular field;
- \mathcal{J} is generalized Calabi–Yau if K has a nowhere vanishing d^H -closed section.
- $\pi_T \circ \mathcal{J}(T^*)$ is an integrable singular distribution (with symplectic leaves).

Generalized complex geometry — Local structure

Theorem (Gualtieri 2003)

If the type is locally constant, the GCS is locally equivalent to the product of a complex and a symplectic structure.

Theorem (Bailey 2011)

Any GCS is locally equivalent to a product of a symplectic and a holomorphic Poisson structure.

What do GCS look like? \rightsquigarrow what do holomorphic Poisson structures look like?

Generalized Calabi-Yau geometry

Question

Is \mathcal{J} GCY?

- 1. *K* has a nowhere vanishing section $\rho \Leftrightarrow c_1(K) = 0$;
- 2. $\rho \rightsquigarrow v$ (modular field). There is a *closed* section \Leftrightarrow $[v] = 0 \in H^1(L);$

Generalized Calabi-Yau geometry

Question

Is \mathcal{J} GCY?

3. If \mathcal{J} has constant type,

$$\rho = e^{B + i\omega} \wedge \Omega$$

then $d\Omega = 0$ and can ask whether $d^H e^{B+i\omega} = 0$.

$$\{0\} \longrightarrow \ker(\Omega \wedge)^i \longrightarrow \Omega^i(M;\mathbb{C}) \xrightarrow{\Omega \wedge} \mathcal{I}_{\Omega}^{i+k} \longrightarrow \{0\}$$

Twitsting class

$$\delta \rho \quad \rightsquigarrow \quad [H + d(B + i\omega)] \in H^3(\ker(\Omega \wedge)).$$

Stable GC structures

Example (Kodaira–Thurston manifold)

Compact manifold corresponding to the Lie algebra

$$\mathfrak{n} = \langle e_1, e_2, e_3, e_4 : [e_1, e_2] = e_3 \rangle.$$

Type 1 GCY given by

$$e^{e^3 \wedge e^4} \wedge (e^1 + ie^2).$$

 $\Omega \wedge \overline{\Omega} = e^1 \wedge e^2 = de^3 \Rightarrow$ Twisting class does not vanish.

Theorem (Cavalcanti–Gualtieri)

Let D^{2n} be a compact, connected type 1 GCY. Then the following hold:

- There is a surjective submersion $\pi : D \longrightarrow T^2$, hence $b_1(D) \ge 2$ and $\chi(D) = 0$.
- **2** If D has a compact leaf, then fibers of π are the symplectic leaves of \mathcal{J} .
- **③** If the twisting class vanishes,
 - the structure can be deformed into one with a compact leaf;
 - there are classes $a, b \in H^1(D)$ and $c \in H^2(D)$ such that $abc^{n-1} \neq 0$. In particular $b_i(D) > 2$ for 0 < i < 2n.

Theorem (Cavalcanti–Gualtieri)

Let $\pi : D \longrightarrow T^2$ be a fibration of a compact, connected, oriented 4-manifold over the torus. Then D admits a type 1 GCY structure for which the fibers of π are the symplectic leaves of \mathcal{J} .

Relevant steps.

- Oriented surface fibration \Rightarrow symplectic fibration;
- 2 If there is a class $c \in H^2(D)$ with $c|_F = [\omega_F]$, then it is groovy (Thurston);
- If the genus of the fiber is not 1, there is such a class *c*;
- Torus bundles over the torus have been classified (Sakamoto–Fukuhara, Ue, Geiges).
 Only 2 do not satisfy Thurston's condition:
 - Kodaira-Thurston;
 - "the other" nilmanifold.

The anticanonical bundle of \mathcal{J} has a natural section:

$$s(\rho) = \rho_0.$$

 \mathcal{J} is *stable* if *s* has only nondegenerate zeros. i.e., if ρ is a nonvanishing section of *K* then $d\rho_0 \neq 0$ along the locus $[\rho_0 = 0]$.

Theorem (Cavalcanti–Gualtieri, Goto–Hayano)

Logarithmic transform on a symplectic 4*-manifold along a symplectic torus with trivial normal bundle produces stable structures.*

Example (Cavalcanti–Gualtieri)

 $n \# \mathbb{C}P^2 \# m \overline{\mathbb{C}P^2}$

has a stable gcs if and only if it has an almost cplx str.

Theorem (Torres)

If M^4 and N^4 have sympletic tori with trivial normal bundle,

$$M\#(S^2 \times S^2)\#N \qquad M\#\mathbb{C}P^2\#\overline{\mathbb{C}P^2}\#N$$

have stable generalized complex structure.

Keep in mind

Theorem (Iwase, Baykur–Sunukjian)

Every compact, simply connected 4-manifold is obtained from connected sums of $\mathbb{C}P^2$, $\overline{\mathbb{C}P^2}$ and $S^1 \times S^3$ by means of logarithmic transforms along disjoint tori.

Question

What does the singular locus look like?

Bailey's theorem \Rightarrow there are coordinates in $\mathbb{R}^{2n-4} \times \mathbb{C}^2$ for which

$$ho = e^{i\omega_0} \wedge (z + dz \wedge dw) \sim e^{i\omega_0 + d\log z \wedge dw}$$

Induce data on the singular locus, *D*:

- *D* is the zero locus of *s*, the anticanonical section ⇒ codimension 2 submanifold;
- The residue of ρ gives *D* a type 1 GCY structure:

$$e^{i\omega_0}\wedge (z+dz\wedge dw) \rightsquigarrow e^{i\omega}dw$$

• adjunction formula:

$$ds: \mathcal{N}^* \otimes K^*|_D \cong \mathbf{1},$$

 $\mathcal{N}^* \cong K|_D$ gives \mathcal{N} a generalized holomorphic structure.

• twisting class of *D* ~ Chern class of *K*:

 $c_1(K) \wedge \Omega|_D$ = twisting class of D.

Proposition (Cavalcanti-Gualtieri)

Let D be a type 1 GCY and let \mathcal{N} be a generalized holomorphic vector bundle over D. Then the total space of \mathcal{N} admits a stable structure whose singular locus is the zero section.

Theorem (Cavalcanti-Gualtieri)

Let M be a stable GC manifold and let D be a compact component of the singular locus. Then a neighbourhood of D determines and is determined by the induced GCY on D and the holomorphic structure of \mathcal{N}^* .

Stable structures — Properties of the singular locus

The vector field $\partial/\partial w$ preserves the structure

 \Rightarrow

The sphere bundle of \mathcal{N} inherits a co-symplectic structure: $\sigma = \omega|_{S^1 \mathcal{N}}$ and $\alpha = \partial/\partial r \cdot \omega$ such that

 $d\sigma = 0 = d\alpha$ and $\sigma^{n-1} \wedge \alpha \neq 0$.

In 4-d this the pair (α, σ) gives rise to a taut foliation.

Stable structures — 4 d

Theorem (Cavalcanti–Gualtieri)

Let M^4 be a compact stable generalized complex manifold whose anticanonical divisor has connected components D_1, \ldots, D_n . Then for each *i* there is a tubular neighbourhood U_i of D_i , a symplectic manifold with boundary (X_i, ω_i) and an orientation reversing diffeomorphism of coisotropic submanifolds $\varphi_i : \partial X_i \xrightarrow{\cong} \partial \overline{U}_i$, so that

$$\widetilde{M} = M \backslash \overline{U} \cup_{\varphi} X \tag{1}$$

is a symplectic manifold.

Further, X_i can be chosen so that $b^+(X_i) > 1$ and the restriction map $H^2(X_i) \longrightarrow H^2(\partial X_i)$ is surjective.

Stable structures — 4 d

Proof.

Since the boundary of a tubular nhood of D has a taut foliation, the result follows from work of Elisashberg ad Etnyre on symplectic fillings of taut foliations.

Theorem (Kronheimer-Mrowka)

Let Y be a closed 3-manifold with a smooth taut foliation (\mathcal{F}, σ) , then there exists a closed symplectic 4-manifold (X, ω) containing Y as a separating manifold for which $\omega|_Y = \sigma$. Furthermore if $Y \neq S^1 \times S^2$, we can arrange so that the map $H^2(X; \mathbb{R}) \longrightarrow H^2(Y; \mathbb{R})$ is surjective and each component of X\Y has $b_2^+ > 1$.

Stable structures — 4 d

Corollary

An embedded surface $\Sigma \hookrightarrow M^4$ of a stable GCM disjoint from the singular locus must satisfy the adjunction inequality: if $\Sigma \cdot \Sigma \ge 0$, then

 $2g-2 \ge |K \cdot \Sigma| + \Sigma \cdot \Sigma.$

In particular, there are no spheres with nonnegative self-intersection that do not touch the singular locus. N.B.: **There are** many (Lagrangian) spheres of zero self-intersection which cross the singular locus. N.B. The singular locus is often a torus of positive self intersection.