Conformal Killing 2-forms on low dimensional Lie groups

María Laura Barberis

Universidad Nacional de Córdoba, Argentina CIEM - CONICET

Workshop on almost hermitian and contact geometry MRCC-Bedlewo, Poland October 18 – 24, 2015

Outline

- The conformal Killing equation.
- The invariant setting.
- Some general obstructions.
- Nilpotent Lie groups.
- Compact Lie groups.
- The classification in dimension 3.

The conformal Killing equation

Let (M, g) be a Riemannian manifold with dim M = n. A *p*-form ω on M is called *conformal Killing* (CK) if it satisfies the following equation:

$$abla_X\omega=rac{1}{p+1}\iota(X)d\omega-rac{1}{n-p+1}X^*\wedge d^*\omega,$$

where ∇ is the Levi-Civita connection, X^* is the 1-form dual to X, d^* is the co-differential and ι is the interior product.

If moreover ω is co-closed, that is $d^*\omega = 0$, then ω is called *Killing*. Killing forms are forms whose covariant derivative is totally skew-symmetric. Indeed,

$$abla_X \omega = rac{1}{p+1} \iota(X) d\omega.$$

We recall that $d^*\omega$ can be computed as follows: if $\{E_i : i = 1, ..., n\}$ is a local orthonormal basis of vector fields, then

$$d^*\omega(U_1,...,U_{p-1}) = -\sum_{i=1}^n (\nabla_{E_i}\omega)(E_i,U_1,...,U_{p-1})$$

for any vector fields $U_1, ..., U_{p-1}$ on M.

In particular, if ω is parallel, that is, $\nabla_X \omega = 0$ for all X, then ω is a Killing form.

Some properties:

1 If ω is a 1-form and $U = \omega^*$ then:

- ω is Killing \Rightarrow U is Killing vector field ($\mathcal{L}_U g = 0$);
- ω is conformal Killing ⇒ U is a conformal vector field (L_Ug = φg, for some function φ).
- 2 If ω is a CK *p*-form on (M^n, g) , then $*\omega$ is a CK (n p)-form.
- Conformal invariance: If ω is a CK p-form on (M, g) and ğ := e^{2λ}g is a conformally equivalent metric, then the form ω̃ := e^{(p+1)λ}ω is a CK p-form on (M, ğ).

The space of CK
$$p$$
-forms has finite dimension $\leq inom{n+2}{p+1}.$

Comments

- Killing *p*-forms were first introduced by Kentaro Yano in 1952 as a natural generalization of Killing vector fields to forms.
- They have been intensively studied by physicists since the work of Penrose and Walker (1970). Killing tensors give rise to quadratic first integrals of the geodesic equation.
- Conformal Killing tensors as a generalization of conformal Killing vector fields appear in different papers by Tachibana, Kashiwada in 1968, 1969 respectively. They are also called conformal Killing-Yano forms or twistor forms.

Some examples of the general results obtained are:

Theorem (Moroianu-Semmelmann, 2005)

Every Killing p-form on a compact quaternionic Kähler manifold is automatically parallel ($p \ge 2$).

Theorem (Belgun-Moroianu-Semmelmann, 2006)

A compact simply connected symmetric space carries a non-parallel Killing p-form if and only if it is isometric to a Riemannian product $S^k \times N$, where S^k is a round sphere and k > p.

Theorem (Moroianu-Semmelmann, 2008)

A CK form on a compact Riemannian product is a sum of parallel forms, Killing forms on one of the factors, and their Hodge duals.

Examples

(i) The round sphere S^n . CK forms are sums of closed and co-closed forms corresponding to the least eigenvalue of the Laplace operator.

(ii) A Riemannian manifold (M, g) is called Sasakian if there exists a unit length Killing vector field ξ such that for all X vector field on M,

$$\nabla_X d\eta = -2X^* \wedge \eta$$

where $\eta(Y) = g(\xi, Y)$ for any vector field Y on M.

In a Sasakian manifold, $d\eta^k$ and $\eta \wedge d\eta^k$ are closed (resp., co-closed) conformal Killing forms, for $k \ge 1$.

(iii) In the case of a 2-form ω on a Riemannian manifold (M, g) one can consider the associated skew-symmetric tensor $T : TM \to TM$ defined by $\omega(X, Y) = g(TX, Y)$. In this case the 2-form ω is Killing if and only if

$$(\nabla_X T)Y + (\nabla_Y T)X = 0,$$

or equivalently,

$$(\nabla_X T)X = 0$$
, for all $X \in \mathfrak{X}(M)$.

As a consequence one has:

Let (M, g, T) be a Riemannian manifold with a skew-adjoint endomorphism T of TM. The associated 2-form $\omega(X, Y) = g(TX, Y)$ is Killing if and only if $(\nabla_X T)X = 0$ for all $X \in \mathfrak{X}(M)$. Particular case:

(M, g, J) an almost Hermitian manifold with Kähler form $\omega(X, Y) = g(JX, Y)$.

Then:

 ω is a Killing 2-form if and only if $(\nabla_X J)X = 0$, equivalently (M, g, J) is nearly Kähler.

Nearly Kähler manifolds were introduced by Alfred Gray in 1976 and have been much studied since then.

It is known that a 4-dimensional nearly Kähler manifold is Kähler. In this more general context we can prove

Proposition (Andrada-Dotti)

If (M,g) is a 4-dimensional Riemannian manifold and T is an invertible skew-symmetric endomorphism of TM such that $(\nabla_X T)X = 0$, then T is parallel.

According to [U. Semmelmann, Math. Zeit. 2003] a 2-form ω is CK if and only if there exists a 1-form θ on M such that

$$\nabla_X \omega(Y,Z) + \nabla_Y \omega(X,Z) = 2g(X,Y)\theta(Z) - g(X,Z)\theta(Y) - g(Y,Z)\theta(X),$$

for any vector fields X, Y, Z on M. Furthermore, the 1-form θ is given by

$$heta = -rac{1}{n-1}d^*\omega$$

In particular, a 2-form ω is Killing if

$$\nabla_X \omega(Y,Z) + \nabla_Y \omega(X,Z) = 0,$$

for any vector fields X, Y, Z on M.

Invariant setting on Lie groups

In [B -Dotti-Santillán, Class. Quantum Grav. 2012] we begin the study of *left-invariant* Killing 2-forms on Lie groups equipped with left invariant metrics. Equivalently, we consider a Lie algebra \mathfrak{g} with an inner product \langle , \rangle and a 2-form $\omega \in \Lambda^2 \mathfrak{g}^*$ satisfying the Killing equation.

Let \mathfrak{g} be a 2-step nilpotent Lie algebra, that is, $[\mathfrak{g}',\mathfrak{g}] = 0$, where $\mathfrak{g}' = [\mathfrak{g},\mathfrak{g}]$ is the commutator ideal. Fix an inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{g} and let \mathfrak{z} be its center, and $\mathfrak{v} = \mathfrak{z}^{\perp}$. For $z \in \mathfrak{z}$ define $j : \mathfrak{z} \to \mathfrak{so}(\mathfrak{v})$ defined by

$$\langle j_z x, y \rangle = \langle z, [x, y] \rangle$$
 for $z \in \mathfrak{z}, x, y \in \mathfrak{v}$.

Theorem (BDS, 2012)

Let T be a skew-symmetric endomorphism of $\mathfrak{g} = \mathfrak{z} \oplus \mathfrak{v}$. Then T is a Killing tensor on \mathfrak{g} if and only if T preserves the center \mathfrak{z} and for all $z \in \mathfrak{z}$ the following equation holds:

$$T \circ j_z = -j_z \circ T|_{\mathfrak{v}} = \frac{1}{3}j_{Tz}.$$

Corollary

If T is a left-invariant Killing tensor on the (2n + 1)-dimensional Heisenberg group H_{2n+1} then T = 0.

Proposition

The Iwasawa manifold with its standard metric carries a non-degenerate Killing tensor.

We recall that a left invariant metric on a Lie group G is called *bi-invariant* if right translations are also isometries.

Theorem

Let G be a Lie group with a bi-invariant metric. If T is a skew-symmetric endomorphism of \mathfrak{g} then T is a Killing tensor if and only if $T|_{[\mathfrak{g},\mathfrak{g}]} = 0$. In particular, a compact semisimple Lie group has no non trivial Killing 2-forms.

Theorem

For any left invariant metric on SU(2), there are no non-trivial left invariant Killing 2-forms.

Left-invariant CK 2-forms on Lie groups

We will consider CK 2-forms $\omega \in \Lambda^2 \mathfrak{g}^*$, where \mathfrak{g} is equipped with an inner product $\langle \cdot, \cdot \rangle$. Since ω is uniquely determined by a skew-symmetric endomorphism T of \mathfrak{g} by $\omega(x, y) = \langle Tx, y \rangle$, we will often refer to T as a CK tensor.

As stated before, ω is conformal Killing if and only if there exists a 1-form $\theta\in\mathfrak{g}^*$ such that

$$(
abla_x\omega)(y,z)+(
abla_y\omega)(x,z)=2\langle x,y
angle heta(z)-\langle x,z
angle heta(y)-\langle y,z
angle heta(x),$$

for any $x, y, z \in \mathfrak{g}$. Furthermore, the 1-form θ is given by

$$heta = -rac{1}{n-1}d^*\omega.$$

We will consider CK tensors T which are not Killing. In this case we say that the CK tensor is *strict*.

CK 2-forms on nilpotent Lie groups

Let \mathfrak{g} be a 2-step nilpotent Lie algebra, that is, $[\mathfrak{g}',\mathfrak{g}] = 0$, where $\mathfrak{g}' = [\mathfrak{g},\mathfrak{g}]$ is the commutator ideal. Fix an inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{g} and let \mathfrak{z} be its center, and $\mathfrak{v} = \mathfrak{z}^{\perp}$. For $z \in \mathfrak{z}$ let $j : \mathfrak{z} \to \mathfrak{so}(\mathfrak{v})$ be defined by

$$\langle j_z x, y
angle = \langle z, [x, y]
angle$$
 for $z \in \mathfrak{z}, x, y \in \mathfrak{v}.$

Theorem ([Andrada-B -Dotti, J. Geom. Phys. 2015])

If g is a 2-step nilpotent Lie algebra admitting an inner product with a strict CK tensor T, then g is isomorphic to \mathfrak{h}_{2m+1} and if z_0 is a unit generator of the center of \mathfrak{h}_{2m+1} , then $Tz_0 = 0$ and $T|_{\mathfrak{v}} = \lambda j_{z_0}^{-1}$, for some $\lambda \neq 0$, where $\mathfrak{v} = z_0^{\perp}$.

CK 2-forms on compact Lie groups

Theorem

Let G be a compact n-dimensional Lie group equipped with a bi-invariant metric g. If there exists a left-invariant strict conformal Killing tensor T, then n = 3 and the Lie algebra of G is isomorphic to $\mathfrak{su}(2)$.

Later we will exhibit all left invariant metrics on SU(2) that admit CK 2-forms. The existence of left invariant CK 2-forms on compact Lie groups equipped with left invariant metrics has not yet been settled.

CK tensors in dimension 3.

In [Andrada-B -Dotti, J. Geom. Phys. 2015] we classified the CK 2-forms on 3-dimensional Lie groups, extending in this way the work of Perrone (1998) on Sasakian structures on such groups.

$$\begin{aligned} \mathfrak{su}(2) &: \quad [f_1, f_2] = f_3, \qquad [f_2, f_3] = f_1, \qquad [f_3, f_1] = f_2, \\ \mathfrak{sl}(2, \mathbb{R}) &: \quad [f_1, f_2] = -f_3, \qquad [f_2, f_3] = f_1, \qquad [f_3, f_1] = f_2, \\ \mathfrak{e}(2) &: \quad [f_3, f_1] = f_2, \qquad [f_3, f_2] = -f_1, \\ \mathfrak{h}_3 &: \quad [f_1, f_2] = f_3, \\ \mathfrak{aff}(\mathbb{R}) \times \mathbb{R} &: \quad [f_1, f_2] = f_2. \end{aligned}$$

Note that $\mathfrak{e}(2)$ is the Lie algebra of the isometry group of the Euclidean plane and \mathfrak{h}_3 is the Heisenberg Lie algebra.

Theorem ([ABD, 2015])

The 3-dimensional non-abelian Lie algebras admitting an inner product with non-zero CK 2-forms are $\mathfrak{e}(2)$, $\mathfrak{sl}(2,\mathbb{R})$, $\mathfrak{su}(2)$, \mathfrak{h}_3 and $\mathfrak{aff}(\mathbb{R}) \times \mathbb{R}$. Furthermore,

- Any left invariant metric on E(2) admitting CK 2-forms is flat and any of these 2-forms is parallel.
- On SU(2) and SL(2, ℝ) there is a one-parameter family of left invariant metrics, pairwise non-isometric up to scaling, that admit CK 2-forms and any of these 2-forms is strict.
- Any left invariant metric on the Lie group H₃ admits CK 2-forms and any of these 2-forms is strict.
- Any left invariant metric on the Lie group $Aff(\mathbb{R}) \times \mathbb{R}$ admits CK 2-forms. Up to scaling, each of these metrics is isometric to g_t for one and only one $t \ge 0$. For t = 0 the CK 2-forms are all parallel, while for t > 0, the CK 2-forms are all strict.

Remark. We point out that all the CK 2-forms from the Theorem are closed. Furthermore, when these CK 2-forms are strict, their Hodge duals are contact forms.

Corollary

A left-invariant metric g on SU(2) admits non-trivial left invariant CK tensors if and only if g is homothetic to the Berger metric g_t for some t > 0.

• $\mathfrak{su}(2)$:

$$g_t = egin{pmatrix} 1 & & \ & 1 & \ & & t \end{pmatrix}, \qquad t > 0.$$

• $\mathfrak{sl}(2,\mathbb{R})$:

$$g_t = egin{pmatrix} 1 & & \ & 1 & \ & & t \end{pmatrix}, \qquad t > 0.$$

• $\mathfrak{aff}(\mathbb{R}) \times \mathbb{R}$:

$$g_t = egin{pmatrix} 1 & & \ & 1+t^2 & t \ & t & 1 \end{pmatrix}, \qquad t>0.$$

Coordinate expression of the metrics

In order to obtain the coordinate expression of the left invariant metrics we give a basis of left invariant 1-forms in local coordinates on each Lie group.

• $\mathfrak{su}(2)$: using the Euler angles (ψ, θ, ϕ) as a local coordinate system on SU(2), a basis of left invariant 1-forms is given by

$$\sigma_1 = \sin \theta \sin \psi \, d\phi + \cos \psi \, d\theta, \quad \sigma_2 = \sin \theta \cos \psi \, d\phi - \sin \psi \, d\theta,$$

$$\sigma_3 = d\psi + \cos\theta \, d\phi.$$

There are two cases:

(i) t > 0, $t \neq 1$. The left invariant Berger metric g_t can be written as

$$g_t = \sigma_1^2 + \sigma_2^2 + t\sigma_3^2,$$

and any left invariant CK 2-form on SU(2) with respect to this metric is a constant multiple of $\omega = \sigma_1 \wedge \sigma_2$.

(ii) t = 1. The left invariant metric g_1 can be written as

$$g_1 = \sigma_1^2 + \sigma_2^2 + \sigma_3^2,$$

and any left invariant 2-form on SU(2) is CK with respect to this bi-invariant metric.

• $\mathfrak{sl}(2,\mathbb{R})$: using the diffeomorphism $SL(2,\mathbb{R}) \simeq S^1 \times \mathbb{R}^2$ corresponding to the lwasawa decomposition, we may consider a local coordinate system

$$(heta, r, s) \longrightarrow egin{pmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{pmatrix} egin{pmatrix} e^r & 0 \ 0 & e^{-r} \end{pmatrix} egin{pmatrix} 1 & s \ 0 & 1 \end{pmatrix} \in SL(2, \mathbb{R}).$$

A basis of left invariant 1-forms is given by

$$\sigma_1 = dr - se^{2r} d\theta, \quad \sigma_2 = 2s dr + ds - (s^2 e^{2r} + e^{-2r}) d\theta,$$
$$\sigma_3 = e^{2r} d\theta,$$

and the left invariant metric g_t can be written as

$$g_t = 4\sigma_1^2 + (\sigma_2 + \sigma_3)^2 + t(-\sigma_2 + \sigma_3)^2 \quad t > 0.$$

Any left invariant CK 2-form on $SL(2, \mathbb{R})$ with respect to this metric is a constant multiple of $\omega = \sigma_1 \wedge (\sigma_2 + \sigma_3)$.

•
$$\mathfrak{h}_3$$
: Let $H_3 = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{R} \right\}$ be the simply connected Lie group with Lie algebra \mathfrak{h}_3 .

A basis of left invariant 1-forms on H_3 is

$$\sigma_1 = dx, \quad \sigma_2 = dy, \quad \sigma_3 = dz - x \, dy,$$

and the left invariant metric g can be written as

$$g = \sigma_1^2 + \sigma_2^2 + \sigma_3^2.$$

Moreover, any left invariant CK 2-form on H_3 is a constant multiple of $\omega = \sigma_1 \wedge \sigma_2 = dx \wedge dy$.

•
$$\mathfrak{aff}(\mathbb{R}) \times \mathbb{R}$$
: Let $\operatorname{Aff}(\mathbb{R}) \times \mathbb{R} = \left\{ \begin{pmatrix} e^x & y & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^z \end{pmatrix} : x, y, z \in \mathbb{R} \right\}$. Then

(x, y, z) define global coordinates on Aff $(\mathbb{R}) \times \mathbb{R}$, and a basis of left invariant 1-forms is given by

$$\sigma_1 = dx, \quad \sigma_2 = e^{-x} \, dy, \quad \sigma_3 = dz.$$

The left invariant metric g_t is

$$g_t = \sigma_1^2 + \sigma_2^2 + (t\sigma_2 + \sigma_3)^2, \quad t > 0$$

and any left invariant CK 2-form is a constant multiple of $\omega = e^{-x} dx \wedge dy$.

Some references

- K. Yano, *On harmonic and Killing vector fields*, Ann. of Math. (1952).
- R. Penrose, M. Walker, *On quadratic first integrals of the geodesic equations for type 22 spacetimes*, Comm. Math. Phys (1970).
- D. Perrone, *Homogeneous contact Riemannian three-manifolds*, Illinois J. Math. (1998).
- U. Semmelmann, *Conformal Killing forms on Riemannian manifolds*, Math. Z. (2003).
- A. Moroianu, U. Semmelmann, *Killing forms on quaternion-Kähler manifolds*, Ann. Global Anal. Geom. (2005).
- F. Belgun, A. Moroianu, U. Semmelmann, *Killing forms on symmetric spaces*, Differential Geom. Appl. (2006).
- A. Moroianu, U. Semmelmann, *Twistor forms on Riemannian products*, J. Geom. Phys.(2008).

- M.L. Barberis, I. Dotti, O. Santillán, *The Killing-Yano equation on Lie groups*, Class. Quantum Grav. (2012).
- A. Andrada, M. Origlia, *Locally conformally Kähler structures on unimodular Lie groups*, Geometriae Dedicata (2015).
- V. De Smedt, S. Salamon, *Anti-self-dual metrics on Lie groups*, Differential geometry and integrable systems (Tokyo, 2000), 63–75, Contemp. Math. **308**, Amer. Math. Soc., Providence, RI, 2002.
- S. Maier, Conformally flat Lie groups, Math. Z. 228 (1998), 155–175.