
Canonical structures on generalized symmetric spaces

Vitaly V. Balashchenko
Belarusian State University, Minsk, Belarus

Workshop on almost hermitian and contact geometry
Bedlewo, Poland, October 18 - 24, 2015

Main goals:
- to present selected recent results and trends in the theory of canonical

structures on homogeneous k-symmetric spaces;
- to give some applications of canonical structures to generalized

Hermitian geometry and Riemannian geometry
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1. Homogeneous k–symmetric spaces and canonical struc-
tures
Researchers who founded this theory: V.I.Vedernikov, N.A.Stepanov, A.Ledger,

A.Gray, J.A.Wolf, A.S.Fedenko, O.Kowalski, L.V.Sabinin, V.Kac . . .

Definition 1. Let G be a connected Lie group, Φ its (analytic) au-
tomorphism, GΦ the subgroup of all fixed points of Φ, and GΦ

o the
identity component of GΦ. Suppose a closed subgroup H of G satisfies
the condition

GΦ
o ⊂ H ⊂ GΦ.

Then G/H is called a homogeneous Φ-space.
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Homogeneous Φ-spaces include homogeneous symmetric spaces (Φ2 = id)
and, more general, homogeneous Φ-spaces of order k (Φk = id) or, in the
other terminology, homogeneous k-symmetric spaces
For any homogeneous Φ-space G/H one can define the mapping

So = D : G/H → G/H, xH → Φ(x)H.
It is evident that in view of homogeneity the ”symmetry” Sp can be defined

at any point p ∈ G/H .

The class of homogeneous Φ–spaces is very large and contains even non-
reductive homogeneous spaces. At this stage we dwell on homogeneous
k-symmetric spaces G/H only.
Let g and h be the corresponding Lie algebras for G and H , ϕ = dΦe

the automorphism of g, where ϕk = id. Consider the linear operator
A = ϕ − id. It is known (N.A.Stepanov, 1967) that G/H is a reductive
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space for which the corresponding canonical reductive decomposition is
of the form:

g = h⊕m, m = Ag.

Besides, this decomposition is obviously ϕ–invariant. Denote by θ the
restriction of ϕ to m. As usual, we identify m with the tangent space
To(G/H) at the point o = H .

Definition 2 (VVB, N.A.Stepanov, 1991). An invariant affinor struc-
ture F (i.e. a tensor field of type (1, 1)) on a homogeneous k-symmetric
space G/H is called canonical if its value at the point o = H is a poly-
nomial in θ.
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Denote by A(θ) the set of all canonical affinor structures on G/H . It is
easy to see that A(θ) is a commutative subalgebra of the algebra A of all
invariant affinor structures on G/H . It should be mentioned that all canon-
ical structures are, in addition, invariant with respect to the ”symmetries”
{Sp} of G/H .

Note that the algebraA(θ) for any symmetric Φ-space (Φ2 = id) is trivial,
i.e. it is isomorphic to R.
The most remarkable example of canonical structures is the canonical al-
most complex structure J = 1√

3
(θ − θ2) on a homogeneous 3-symmetric

space (N.A.Stepanov, J.Wolf, A.Gray, 1967-1968).
It turns out that for homogeneous k-symmetric spaces (k ≥ 3) the algebra
A(θ) contains a rich collection of classical structures. All these canonical
structures on homogeneous k–symmetric spaces were completely described.
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We will concentrate on the following affinor structures of classical types:
almost complex structures J (J2 = −1);
almost product structures P (P 2 = 1);
f -structures (f3 + f = 0) (K.Yano, 1963);
f -structures of hyperbolic type or, briefly, h-structures (h3 − h = 0)

(V.F.Kirichenko, 1983).
Clearly, f -structures and h-structures are generalizations of structures J
and P respectively.

We use the notation: s = [k−1
2 ] (integer part), u = s (for odd k), and

u = s + 1 (for even k).
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Theorem 1 (VVB,N.A.Stepanov,1991, 1998). Let G/H be a homoge-
neous k-symmetric space.

(1) All non-trivial canonical f -structures on G/H can be given by the
operators

f =
2

k

u∑
m=1

 u∑
j=1

ζj sin
2πmj

k

 (
θm − θk−m

)
,

where ζj ∈ {−1; 0; 1}, j = 1, 2, . . . , u, and not all coefficients ζj
are zero. In particular, suppose that −1 /∈ spec θ. Then the
polynomials f define canonical almost complex structures J iff all
ζj ∈ {−1; 1}.
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(2) All canonical h-structures on G/H can be given by the polynomials

h =
k−1∑
m=0

amθm, where:

(a) if k = 2n + 1, then

am = ak−m =
2

k

u∑
j=1

ξj cos
2πmj

k
;

(b) if k = 2n, then

am = ak−m =
1

k

2

u∑
j=1

ξj cos
2πmj

k
+ (−1)mξn


Here the numbers ξj take their values from the set {−1; 0; 1} and
the polynomials h define canonical structures P iff all ξj ∈ {−1; 1}.
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We now particularize the results above mentioned for homogeneous Φ-
spaces of orders 3, 4, and 5 only.

Corollary 1. Let G/H be a homogeneous 3-symmetric space. There
are (up to sign) only the following canonical structures of classical type
on G/H:

J =
1√
3
(θ − θ2), P = 1.

We noted that the existence of the structure J and its properties are well
known (see N.A.Stepanov, J.Wolf, A.Gray, V.F.Kirichenko, . . . ).

Corollary 2. On a homogeneous 4-symmetric space there are (up to
sign) the following canonical classical structures:

P = θ2, f =
1

2
(θ − θ3), h1 =

1

2
(1− θ2), h2 =

1

2
(1 + θ2).
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Corollary 3. There exist (up to sign) only the following canonical
structures of classical type on any homogeneous 5-symmetric space:

P =
1√
5
(θ − θ2 − θ3 + θ4);

J1 = α(θ − θ4)− β(θ2 − θ3); J2 = β(θ − θ4) + α(θ2 − θ3);

f1 = γ(θ − θ4) + δ(θ2 − θ3); f2 = δ(θ − θ4)− γ(θ2 − θ3);

h1 =
1

2
(1 + P ); h2 =

1

2
(1− P );

where α =

√
5+2
√

5
5 ; β =

√
5−2
√

5
5 ; γ =

√
10+2

√
5

10 ; δ =

√
10−2

√
5

10 .
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We give another explanation for canonical structures f and P .
Let us write the corresponding ϕ-invariant decomposition of the Lie alge-

bra g:
g = h⊕m = m0 ⊕m = m0 ⊕m1 ⊕ ...⊕mu,

where the subspaces m1, . . . ,mu correspond to the spectrum of the operator
θ.
Denote by fi, where i = 1, 2, . . . , s, the base canonical f -structure whose

image is the subspace mi. All the other canonical f -structures are algebraic
sums of some base canonical f -structures.
The base canonical almost product structure Pi has mi as a (+1)-subspace,

the others mj, j 6= i form (−1)-subspace.
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2. Canonical f-structures and the generalized Hermitian
geometry.
The history of one motivation:
Invariant structures in Kähler, Hermitian and generalized Hermitian ge-

ometries:
1. Kähler manifolds (K) ⇐⇒ Hermitian symmetric spaces (HSS)
(A.Borel, A.Lichnerovich, . . . )
2. Almost Hermitian manifolds (AH) (1960 - . . . ) ⇐⇒
Homogeneous 3–symmetric spaces (1967 - . . . )
(N.A.Stepanov, A.Gray, J.A.Wolf, V.F.Kirichenko, S.Salamon, . . . )
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Many applications of the canonical structure J = 1√
3
(θ − θ2) :

homogeneous structures (F.Tricerri, L.Vanhecke, S.Garbiero, . . . ), Ein-
stein metrics (K.Sekigawa, J.Watanabe, H.Yoshida), holomorphic and min-
imal submanifolds (S.Salamon), real Killing spinors (H.Baum, T.Friedrich,
R.Grunewald, I.Kath).
3. Generalized almost Hermitian manifolds (GAH) (1983 - . . . )
(V.F.Kirichenko, A.S.Gritsans, D.Blair, . . . )
⇐⇒
Homogeneous k–symmetric spaces (1988 - . . . )
(A.J.Ledger, L.Vanhecke, VVB, Yu.D.Churbanov, D.V.Vylegzhanin,

A.Sakovich, A.Samsonov, N.Cohen, C.J.C.Negreiros, L.A.B.San Martin,
M.Paredes, S.Pinzon, I.Khemar, . . . )
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2.1. Almost Hermitian structures

K Kähler structure: ∇J = 0;
H Hermitian structure: ∇X(J)Y −∇JX(J)JY = 0;
G1 AH-structure of class G1, or ∇X(J)X −∇JX(J)JX = 0;

G1-structure:
QK quasi-Kähler structure: ∇X(J)Y +∇JX(J)JY = 0;
AK almost Kähler structure: d Ω = 0;
NK nearly Kähler structure, ∇X(J)X = 0.

or NK-structure:

It is well known (see, for example, Gray-Hervella, 1980) that
K ⊂ H ⊂ G1; K ⊂ NK ⊂ G1; NK = G1 ∩QK; K = H ∩QK.
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As was already mentioned, the role of homogeneous almost Hermitian mani-
folds is particularly important ”because they are the model spaces to which
all other almost Hermitian manifolds can be compared” (A.Gray, 1983).
In particular, after the detailed investigation of the 6-dimensional homoge-
neous nearly Kähler manifolds V.F.Kirichenko proved (1981) that naturally
reductive strictly nearly Kähler manifolds SO(5)/U(2) and SU(3)/Tmax

are not isometric even locally to the 6-dimensional sphere S6. These exam-
ples gave a negative answer to the conjecture of S.Sawaki and Y.Yamanoue
(1976) claimed that any 6-dimensional strictly NK-manifold was a space
of constant curvature.
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We select here some known results closely related to the main subject of
our future consideration.

Theorem 2. (E.Abbena, S.Garbiero, 1993) Any invariant almost Her-
mitian structure on a naturally reductive space (G/H, g) belongs to the
class G1.

Theorem 3. (A.Gray, 1972) A homogeneous 3-symmetric space G/H
with the canonical almost complex structure J and an invariant com-
patible metric g is a quasi-Kähler manifold. Moreover, (G/H, J, g)
belongs to the class NK if and only if g is naturally reductive.

Theorem 4. (M.Matsumoto, A.Gray, V.F.Kirichenko, 1976) A 6-
dimensional strictly nearly Kähler manifold is Einstein.
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2.2. Metric f-structures
A fundamental role in the geometry of metric f -manifolds is played by the
composition tensor T , which was explicitly evaluated (V.F.Kirichenko,
1986):

(1) T (X,Y ) =
1

4
f (∇fX(f )fY −∇f2X(f )f2Y ),

where ∇ is the Levi-Civita connection of a (pseudo)Riemannian manifold
(M, g), X, Y ∈ X(M).Using this tensor T , the algebraic structure of a
so-called adjoint Q-algebra in X(M) can be defined by the formula:
X ∗ Y = T (X, Y ). It gives the opportunity to introduce some classes of
metric f -structures in terms of natural properties of the adjoint Q-algebra.
We enumerate below the main classes of metric f -structures together with
their defining properties:
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Kf Kähler f–structure: ∇f = 0;
Hf Hermitian f–structure: T (X, Y ) = 0, i.e. X(M) is

an abelian Q-algebra;
G1f f -structure of class G1, or T (X, X) = 0, i.e. X(M) is

G1f -structure: an anticommutative Q-algebra;
QKf quasi-Kähler f–structure: ∇Xf + TXf = 0;
Kill f Killing f -structure: ∇X(f )X = 0;
NKf nearly Kähler f -structure, ∇fX(f )fX = 0.

or NKf -structure:

The following relationships between the classes mentioned are evident:
Kf = Hf ∩QKf ; Kf ⊂ Hf ⊂ G1f ; Kf ⊂ Kill f ⊂ NKf ⊂ G1f .
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It is important to note that in the special case f = J we obtain the corre-
sponding classes of almost Hermitian structures (16 Gray-Hervella classes).
In particular, for f = J the classes Kill f and NKf coincide with the

well-known class NK of nearly Kähler structures.
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2.3. Invariant metric f-structures on homogeneous mani-
folds
Recall that (G/H, g) is naturally reductive with respect to a reductive

decomposition g = h⊕m if

g([X, Y ]m, Z) = g(X, [Y, Z]m)

for all X, Y, Z ∈ m. Here the subscript m denotes the projection of g onto
m with respect to the reductive decomposition.
Any invariant metric f -structure on a reductive homogeneous space G/H

determines the orthogonal decomposition m = m1 ⊕ m2 such that m1 =
Im f , m2 = Ker f .

Theorem 5. (2001) Any invariant metric f -structure on a naturally
reductive space (G/H, g) is a G1f -structure.
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As a special case (Ker f = 0), it follows Theorem 2 (Abbena-Garbiero).
We stress the particular role of homogeneous 4- and 5-symmetric spaces.

Theorem 6. The canonical f -structure f = 1
2(θ−θ3) on any naturally

reductive 4-symmetric space (G/H, g) is both a Hermitian f -structure
and a nearly Kähler f -structure. Moreover, the following conditions
are equivalent:
1) f is a Kähler f -structure; 2) f is a Killing f -structure; 3) f

is a quasi-Kähler f -structure; 4) f is an integrable f -structure; 5)
[m1, m1] ⊂ h; 6) [m1, m2] = 0; 7) G/H is a locally symmetric space:
[m, m] ⊂ h.
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Theorem 7. Let (G/H, g) be a naturally reductive 5-symmetric space,
f1 and f2, J1 and J2 the canonical structures on this space. Then f1
and f2 belong to both classes Hf and NKf. Moreover, the following
conditions are equivalent:
1) f1 is a Kähler f -structure; 2) f2 is a Kähler f -structure; 3) f1 is

a Killing f -structure; 4) f2 is a Killing f -structure; 5) f1 is a quasi-
Kähler f -structure; 6) f2 is a quasi-Kähler f -structure; 7) f1 is an
integrable f -structure; 8) f2 is an integrable f -structure; 9) J1 and J2
are NK-structures; 10) [m1, m2] = 0 (here m1 = Imf1 = Ker f2, m2 =
Im f2 = Ker f1); 11) G/H is a locally symmetric space: [m, m] ⊂ h.
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It should be mentioned that Riemannian homogeneous 4-symmetric spaces
of classical compact Lie groups were classified and geometrically described
(J.A.Jimenez, 1988).
The similar problem for homogeneous 5-symmetric spaces was considered

by Gr.Tsagas-Ph.Xenos (1987).
By Theorem 6 and Theorem 7, it presents a collection of homogeneous f -

manifolds in the classes NKf and Hf. Note that the canonical f -structures
under consideration are generally non-integrable.
Remark. Note that homogeneous k–symmetric spaces with canonical

f–structures admit generalized almost Hermitian structures of arbitrary
rank r (VVB, D.V.Vylegzhanin).
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Besides, there are invariant NKf -structures and Hf -structures on homo-
geneous spaces (G/H, g), where the metric g is not naturally reductive.
The example of such a kind can be realized on the 6-dimensional general-
ized Heisenberg group (N, g). These groups were introduced by A.Kaplan
and studied by F.Tricerri, L.Vanhecke, J.Berndt and others.

Theorem 8. The 6-dimensional generalized Heisenberg group (N, g)
with respect to the canonical f -structure f = 1

2(θ−θ3) of a homogeneous
Φ-space of order 4 is both Hf - and NKf -manifold. This f -structure
is neither Killing nor integrable on (N, g).
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Remark 2. Theorems 6 and 8, in particular, illustrate simultaneously the
analogy and the difference between the canonical almost complex structure
J on homogeneous 3-symmetric spaces (G/H, g, J) and the canonical f -
structure on homogeneous 4-symmetric spaces (G/H, g, f ) (see Theorem
3).
Many particular examples of both semisimple and solvable types were

investigated in detail. They are:
- the flag manifolds SU(3)/Tmax,
- SO(n)/SO(2)× SO(n− 3), n ≥ 4 ,
- the 6-dimensional generalized Heisenberg group
and some others.
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Specifically, we present invariant Killing f–structures with non-naturally
reductive metrics as well as construct invariant Kähler f–structures on some
naturally reductive not locally symmetric homogeneous spaces.

We should mention other geometric structures on homogeneous k-symmetric
spaces, which are of contemporary interest in geometry and topology:
- symplectic structures on k-symmetric spaces compatible with the corre-

sponding ”symmetries” of order k (A.Tralle, M.Bocheński);
- topology of homogeneous k-symmetric spaces, in particular, geometric

formality (D. Kotschick, S. Terzić, Jelena Grbić);
- geometry of elliptic integrable systems (I.Khemar).
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Let G be a semisimple compact Lie group, B the Killing form of the Lie
algebra g, G/H a homogeneous k-symmetric space. Further, consider the
canonical decomposition

g = h⊕m = m0 ⊕m = m0 ⊕m1 ⊕ ...⊕mu,

where some subspaces can be trivial. We define the collection of ”diagonal”
Riemannian metrics on G/H by the formula

〈X, Y 〉 = λ1B(X1, Y1) + ... + λuB(Xu, Yu),

where X,Y ∈ g, i = 1, u, Xi, Yi ∈ mi from the above decomposition,
λi ∈ R, λi < 0.
The particular case λ1 = · · · = λu gives exactly a naturally reductive

Riemannian metric on G/H .
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We continue this study in this more general aspect. Consider reductive
homogeneous spaces G/H with invariant Riemannian metric g = 〈·, ·〉. Let

g = h⊕m

be the corresponding reductive decomposition. It is well known that the
Nomizu function α for the Levi-Civita connection ∇ is of the form

α(X, Y ) =
1

2
[X, Y ]m + U(X, Y ),

where X, Y ∈ m, and a bilinear symmetric mapping U : m × m → m is
defined from the equality:

2〈U(X, Y ), Z〉 = 〈X, [Z, Y ]m〉 + 〈[Z,X ]m, Y 〉, ∀Z ∈ m.

The Nomizu function α for the Levi-Civita connection∇ in the case of ”di-
agonal” metrics was calculated (2011, A.Samsonov), i.e. the corresponding
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mapping U is of the form:

U(Xi, Yj)mi±j=
λj − λi

2λi±j
[Xi, Yj]mi±j, U(Xi, Yi)=U(Xi, Yj)mn=0,

where mi+j means mk−(i+j) for i + j > u, λi+j means λk−(i+j) for
i + j > u, mn is any of the subspaces ml excluding mi−j and mi+j.
We also recall the important commutator inclusions for the subspaces from

the canonical decomposition (2010, VVB, A.Samsonov). In the previous
notations, they are

[mi, mj] ⊂ mi+j + mi−j.

Note that for k = 2 this formula gives the well-known classical inclusions
for symmetric spaces, namely,

[h, h] ⊂ h, [h, m] ⊂ m, [m, m] ⊂ h.

We formulate several recent general results:
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Theorem 9 (A.Samsonov, 2011). Let (G/H, g) be a homogeneous k-
symmetric space with any ”diagonal” metric g. Then, any base canon-
ical f -structure fi, with i = 1, 2, . . . , s on G/H is a nearly Kähler
f -structure.

Theorem 10 (A.Samsonov, 2011). Let (G/H, g) be a homogeneous k-
symmetric space with any ”diagonal” metric g. Then, for any base
canonical f -structure fi on M , the following assertions hold:
1) if 3i 6= k, then fi belongs to the class Hf;
2) if 3i = k, then fi ∈ Hf ⇔ [mi, mi] ⊂ h.

Note that the above theorems generalize some known results obtained
earlier for orders k = 3, 4, 5 (including the classical results of N.A.Stepanov
and A.Gray for homogeneous 3-symmetric spaces).
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3. Canonical distributions on Riemannian homogeneous k-
symmetric spaces
Riemannian almost product manifold (M, g, P ) naturally admits two com-

plementary mutually orthogonal distributions V (vertical) and H (hori-
zontal) corresponding to the eigenvalues 1 and −1 of P , respectively. In
accordance with the Naveira classification there are 36 classes of Riemann-
ian almost product structures (8 types for each of distributions). Here we
consider the following types of distributions (in terms of vertical ones):
F (foliation): ∇A(P )B = ∇B(P )A;
AF (anti-foliation): ∇A(P )A = 0;
TGF (totally geodesic foliation): ∇A P = 0,
where A and B are vertical vector fields.
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It is known (O. Gil-Medrano) that the system of conditions AF and F is
equivalent to the condition TGF .
Now we concentrate on invariant almost product structures on Riemannian

homogeneous manifolds.
Let (G/H, g = 〈·, ·〉, P ) be a naturally reductive homogeneous space. It

was proved before (VVB, 1998) that both vertical and horizontal distribu-
tions of this structure P are always of type AF . Besides, these distributions
may be of type F (hence, TGF ) under simple algebraic criteria.
It means that, in accordance with the Naveira classification, there are

exactly three classes of invariant naturally reductive almost product struc-
tures. They are (TGF,TGF), (TGF,AF), (AF,AF).
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We continue this study in more general aspect. Consider reductive homo-
geneous spaces G/H with invariant almost product structure P and any
compatible invariant Riemannian metric g = 〈·, ·〉. Let

g = h⊕m, m = m+ ⊕m−
be the corresponding reductive decomposition generated by P . It is well
known that the Nomizu function α for the Levi-Civita connection ∇ is of
the form

α(X, Y ) =
1

2
[X, Y ]m + U(X, Y ),

where X, Y ∈ m, and a bilinear symmetric mapping U : m × m → m is
defined from the equality:

2〈U(X, Y ), Z〉 = 〈X, [Z, Y ]m〉 + 〈[Z,X ]m, Y 〉, ∀Z ∈ m.
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Theorem 11. Let (G/H, g = 〈·, ·〉, P ) be a Riemannian reductive al-
most product space. Then

(1) the vertical distribution m+ belongs to type AF iff

U(A, A) ∈ m+ , ∀ A ∈ m+.

(1) the vertical distribution m+ belongs to type F iff

[m+, m+] ⊂ m+ ⊕ h.

It follows that the distribution m+ belongs to type TGF iff both above
conditions are satisfied.

The similar conditions can be written for the horizontal distribution m−.

We apply these results for canonical structures P on homogeneous k-
symmetric spaces with the ”diagonal” metrics.
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Let G be a semisimple compact Lie group, B the Killing form of the Lie
algebra g, G/H a homogeneous k-symmetric space. As above, consider the
canonical decomposition

g = h⊕m = m0 ⊕m = m0 ⊕m1 ⊕ ...⊕mu,

where some subspaces can be trivial. We define the collection of ”diagonal”
Riemannian metrics on G/H by the formula

〈X, Y 〉 = λ1B(X1, Y1) + ... + λuB(Xu, Yu),

where X,Y ∈ g, i = 1, u, Xi, Yi ∈ mi from the above decomposition,
λi ∈ R, λi < 0.



37

Theorem 12. Any the base canonical distribution mi, 1, u on Rie-
mannian k-symmetric space (G/H, g = 〈·, ·〉) is of type AF for all
”diagonal” metrics g.
Further, the distribution mi belongs to F (hence, TGF ) if and only

if one of the following cases is realized:

(1) The subspace m2i is trivial.
(2) The index i satisfies the condition k = 3i.
(3) [mi, mi] ⊂ h.
(4) If k = 2n, then i = n (i.e. mn belongs to F ).

It follows that for base canonical distributions the result doesn’t depend
on the function U . Note that for 4- and 5-symmetric spaces we have the
decomposition m = m1 ⊕m2, i.e. all canonical distributions are base.
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However, for other canonical distributions (e.g., mi⊕mj) the situation is
more complicated.
Example (homogeneous 6-symmetric spaces).
Here the decomposition is the following: m = m1 ⊕m2 ⊕m3.

Theorem 13. Let G/H be a homogeneous 6-symmetric space, where
G is a compact semisimple Lie group. Suppose g is any diagonal
Riemannian metric on G/H represented by the collection (λ1, λ2, λ3).
Then:

(1) m2 and m3 are of type TGF .
(2) m1 belongs to type TGF if and only if [m1, m1] ⊂ h.
(3) m1 ⊕ m2 is of type AF if and only if any of the following two

conditions is satisfied: (a)λ1 = λ2; (b) [m1, m2] ⊂ m1.
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(4) m1 ⊕ m2 is of type F if and only if [m1, m2] ⊂ m1. This is also a
criterion for type TGF .

(5) m1 ⊕ m3 is of type AF if and only if any of the following two
conditions is satisfied: (a)λ1 = λ3; (b) [m1, m3] = 0.

(6) m1⊕m3 is of type F if and only if both the following relations hold:
[m1, m1] ⊂ h, [m1, m3] = 0. This is also a criterion for type TGF .

(7) m2 ⊕ m3 is of type AF if and only if any of the following two
conditions is satisfied: (a)λ2 = λ3; (b) [m2, m3] = 0.

(8) m2 ⊕ m3 is of type F if and only if [m2, m3] = 0. This is also a
criterion for type TGF .

This theorem gives the opportunity to characterize the Naveira classes for
all combinations of the above canonical distributions. As an example, the
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canonical structure P3 belongs to the class (TGF , TGF ) if and only if
[m1, m2] ⊂ m1.
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4. Left-invariant f-structures on nilpotent Lie groups.
Many results of this section were obtained jointly P.A.Dubovik.
3.1. Left-invariant f -structures on 2-step nilpotent Lie groups.
We start with several important examples.
Example 1.
The 6–dimensional generalized Heisenberg group (N, g) is a G1–manifold

with respect to the left-invariant canonical almost Hermitian structure J =
f3 of the Riemannian homogeneous 6–symmetric space (N, g, Φ). Besides,
the structure J is neither nearly Kähler nor Hermitian structure on the
manifold (N, g).
It should be mentioned that G1–structures of such a kind have interesting

applications in heterotic strings (P.Ivanov, S.Ivanov, 2005).
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Example 2. We also consider the 5–dimensional Heisenberg group
H(2, 1) as a Riemannian homogeneous 6–symmetric space. It is proved that
all the canonical f -structures fi, i = 1, . . . , 4 are Hermitian f -structures.
Besides, the base f -structures f1 and f2 are integrable, but the other f -
structures f3 and f4 are not integrable.
We notice that the group H(2, 1) is used in constructing the 6-dimensional

nilmanifold connected with the heterotic equations of motion in string
theory (M.Fernandez, S.Ivanov, L.Ugarte, R.Villacampa, 2009).
General approach. Let G be a 2-step nilpotent Lie group, g its Lie

algebra, Z(g) the center of g. Consider a left-invariant metric f -structure
on G with respect to a left-invariant Riemannian metric g on G.

Theorem 14 (VVB, P.Dubovik, 2013). (i) If Z(g) ⊂ Ker f then f is a
Hermitian f -structure, but it is not a Kähler f -structure.
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(ii) If Im f ⊂ Z(g) then f is both a Hermitian and a nearly Kähler
f -structure, but it is not a Kähler f -structure.

Example 3. Let H(n, 1) be a (2n + 1)-dimensional matrix Heisen-
berg group. We can consider H(n, 1) as a Riemannian homogeneous k–
symmetric space, where k is even.

Lemma 1. Let f be any left-invariant canonical f -structure on a Rie-
mannian homogeneous k–symmetric space H(n, 1). Then Z(h(n, 1)) ⊂
Ker f.

As an application of a previous theorem, we obtain

Theorem 15 (VVB, P.Dubovik, 2013). Any left-invariant canonical f -
structure on a (2n + 1)-dimensional matrix Heisenberg group H(n, 1)
is a Hermitian f -structure, but it is not a Kähler f -structure.
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3.2. Left-invariant f -structures on Lie groups.

Let G be a connected Lie group, g its Lie algebra. Denote by g(1) = [g, g]

and g(2) = [g(1), g(1)] the first and the second ideal of the derived series.
Consider a left-invariant Riemannian metric g on G determined by the
Euclidean inner product on g.

Theorem 16 (P.Dubovik, 2013). Let f be a left-invariant metric f -
structure on G satisfying any of the following conditions:
(i) g(1) ⊂ Ker f ;

(ii) Im f ⊂ g(1), g(2) ⊂ Ker f ;

(iii) Im f ⊂ Z(g) ⊂ g(1).
Then f is a Hermitian f -structure. Moreover, the condition (iii)

implies that f is a nearly Kähler f -structure. In addition, under the
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condition (i) f is a nearly Kähler f -structure if and only if [fX, f2X ] =
0 for any X ∈ g.

Note that, for example, the 6-dimensional generalized Heisenberg group
and the 5-dimensional Heisenberg group H(2, 1) admit f -structures men-
tioned in the above theorem.

3.3. Filiform Lie groups.
Let g be a nilpotent Lie algebra of dimension m. Let

C0g ⊃ C1g ⊃ · · · ⊃ Cm−2g ⊃ Cm−1g = 0
be the descending central series of g, where

C0g = g, Cig = [g, Ci−1g], 1 ≤ i ≤ m− 1.
A Lie algebra g is called filiform if dimCkg = m − k − 1 for k =

1, . . . ,m− 1. A Lie group G is called filiform if its Lie algebra is filiform.
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Note that the filiform Lie algebras have the maximal possible nilindex,
that is m− 1.
Basic examples of (n + 1)-dimensional filiform Lie algebras:
1. The Lie algebra Ln:
[X0, Xi] = Xi+1, i = 1, . . . , n− 1.
2. The Lie algebra Qn(n = 2k + 1):
[X0, Xi] = Xi+1, i = 1, . . . , n− 1,
[Xi, Xn−i] = (−1)iXn, i = 1, . . . , k.
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3.4. Left-invariant f -structures on 6-dimensional filiform Lie groups.
The classification of 6-dimensional nilpotent Lie algebras was obtained by

V.V.Morozov (1958), there exist 32 types of such algebras.
We select from this list 5 filiform Lie algebras:

(1) The Lie algebra g = L5:
[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6.

Proposition 1. If e1 ∈ Ker f , then f is a Hermitian f -structure.

For example, the following f -structure satisfies the above condition:
f (e1) = f (e2) = 0, f (e3) = −e4, f (e4) = e3,
f (e5) = e6, f (e6) = −e5.

(2) The Lie algebra g = Q5:
[e1, e2] = e3, [e1, e5] = e6, [e2, e3] = e4, [e2, e4] = e5, [e3, e4] = e6.
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Proposition 2. Suppose any of the following conditions is satisfied:
e1, e4 ∈ Ker f , e3, e5 ∈ Ker f , e2, e6 ∈ Ker f. Then f is a Hermitian

f -structure.

For example, the following f -structure satisfies the above condition:
f (e1) = f (e4) = 0, f (e2) = −e3, f (e3) = e2,
f (e5) = e6, f (e6) = −e5.

On analogy, the other three filiform Lie algebras were studied.
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5. Canonical structures of ”metallic family”.
Recently a new type of affinor structures was introduced. It was initiated

by the quadratic equation x2 − x − 1 = 0 for the Golden ratio (Golden

section, Golden proportion, Divine ratio, ...). The positive root 1+
√

5
2 = φ

of this equation is the Golden ratio (the Phidias number).
Definition 1. (M.Crasmareanu, C.-E.Hretcanu, 2008). Affinor structure F

on a manifold M is called a Golden structure if F 2 = F + id.
This notion is a particular case of a general concept of a polynomial

structure on M (S.Goldberg, K.Yano, 1970).
It is easy to see that any Golden structure F induces an almost product

structure P = 1√
5
(2F−id). Conversely, an almost product structure P de-

fines a Golden structure F = 1
2(id+

√
5P ). Besides, in this correspondence

F ←→ P we have: F̃ = id− F ←→ P̃ = −P.
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Very recently the same authors (C.-E.Hretcanu, M.Crasmareanu, 2013)
generalized the above construction. It was based on the following classical
equation.
Fix two positive integers p and q. The positive solution σp,q of the equation

x2 − px− q = 0 is called a (p, q)-metallic number. These numbers

σp,q =
p +

√
p2 + 4q

2

of the metallic means family were considered by Vera W. de Spinadel
(1997 and later).
Some particular cases of the numbers from the metallic means family:

the golden mean φ = 1+
√

5
2 if p = q = 1;

the silver mean σ2,1 = 1 +
√

2 for p = 2, q = 1;
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the bronze mean σ3,1 = 3+
√

13
2 for p = 3, q = 1;

the copper mean σ1,2 = 2 for p = 1, q = 2 and so on.
It should be mentioned that many authors wrote about close relation

of some metallic numbers to classical Fibonacci numbers, Pell numbers,
design, fractal geometry, dynamical systems, quasicrystals etc.
Definition 2. (M.Crasmareanu, C.-E.Hretcanu, 2013). Affinor structure

F on a manifold M is called a metallic structure if F 2 = pF + qI.
Further, for a Riemannian manifold (M, g) the structure F is called a
metallic Riemannian structure if g(FX, Y ) = g(X, FY ) for any vector
fields X, Y .
Any almost product structure P induces two metallic structures on M :

F1 =
p

2
I + (

2σp,q − p

2
)P, F2 =

p

2
I − (

2σp,q − p

2
)P.
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Conversely, any metallic structure F on M determines two almost product
structures:

P = ±(
2

2σp,q − p
F − p

2σp,q − p
I).

Moreover, P is a Riemannian almost product structure on (M, g) if and
only if F1, F2 are metallic Riemannian structures.
An important observation is that the structures F and P define the same

distributions on a manifold M . It means that the properties of the struc-
tures F and P practically coincide.
As usual, we are interested in invariant structures on homogeneous mani-

folds.
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Question: Are there homogeneous manifolds with invariant metallic
structures F ?
Certainly, the answer is positive. For this purpose we can use a rich

collection of canonical almost product structures P on homogeneous k-
symmetric spaces. Moreover, we are able to completely describe all canon-
ical structures F using the corresponding above formulae. For simplicity,
we illustrate some particular cases.
Example 1. Homogeneous 4-symmetric spaces.

Here P = θ2. It follows that all canonical metallic structures are repre-
sented by the formula:

F =
p

2
I ± (

2σp,q − p

2
)θ2.

Example 2. Homogeneous 5-symmetric spaces.
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We have: P = 1√
5
(θ − θ2 − θ3 + θ4).

Then, for instance, canonical silver structures can be written in the form

F = I ±
√

2

5
(θ − θ2 − θ3 + θ4).

Main conclusion: The properties of the metallic structures F can be ob-
tained from those of the corresponding almost product structures P . It
follows that many previous results about invariant distributions and struc-
tures on homogeneous k-symmetric spaces and nilpotent Lie groups can be
adapted and reformulated in terms of metallic structures.
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6. Regular Φ-spaces (the most general case).

Definition 3 (N.A.Stepanov, 1967). Let G/H be a homogeneous Φ-
space, g and h the corresponding Lie algebras for G and H, ϕ = dΦe

the automorphism of g. Consider the linear operator A = ϕ − id and
the Fitting decomposition g = g0 ⊕ g1 with respect to A, where g0 and
g1 denote 0- and 1-component of the decomposition respectively. It is
clear that h = Ker A, h ⊂ g0. A homogeneous Φ-space G/H is called
a regular Φ-space if h = g0.

Two basic facts (N.A.Stepanov, 1967):
- Any homogeneous Φ-space of order k (Φk = id) is a regular Φ-space.
- Any regular Φ-space is reductive. More exactly, the Fitting decom-

position g = h⊕m, m = Ag is a reductive one.
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This decomposition is obviously ϕ-invariant. As before, we denote by θ the
restriction of ϕ to m. Now we also recall the construction of the algebra
A(θ) of canonical affinor structures on regular Φ-spaces.
Consider the commutative algebra An(P) consisting of the matrices having

the form 
z1 z2 . . . zn−1 zn

0 z1
. . . zn−1

... . . . . . . . . . ...
0 0 . . . . . . z2
0 0 . . . 0 z1


where all elements zj, j = 1, 2, . . . , n belong to the field P.
The following theorem gives the description of the algebraic structure for

the algebra A(θ).
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Theorem 17 (VVB, 2002).Let G/H be a regular Φ-space, ν the unitary
minimal polynomial of the operator θ, ν = ν

n1
1 ν

n2
2 . . . νnm

m ν
nm+1
m+1 . . . νns

s
its decomposition into unitary irreducible factors over the field R, where
deg νj = 2 for j = 1, 2, . . . ,m, deg νj = 1 for j = m + 1, . . . , s, and
all polynomials ν1, ν2, . . . , νs are pairwise mutually disjoint. Then, the
algebra A(θ) of canonical affinor structures of the space G/H is iso-
morphic to the direct sum

An1(C)⊕ · · · ⊕ Anm(C)⊕ Anm+1(R)⊕ · · · ⊕ Ans(R)

of real commutative algebras.
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Corollary 4. If G/H is a regular Φ-space, where Φ is a semisimple
automorphism of the Lie group G, then

A(θ) ∼= C⊕ · · · ⊕ C︸ ︷︷ ︸
m

⊕R⊕ · · · ⊕ R︸ ︷︷ ︸
s−m

Corollary 5. Suppose that G/H is a homogeneous k-symmetric space.
Let us denote the number of pairs of conjugate kth roots of unity in
the spectrum of the operator θ by m. Then,

A(θ) ∼= C⊕ · · · ⊕ C︸ ︷︷ ︸
m

⊕R, if − 1 ∈ spec θ,

A(θ) ∼= C⊕ · · · ⊕ C︸ ︷︷ ︸
m

, if − 1 6∈ spec θ.
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In accordance with the structure of the minimal polynomial ν of the op-
erator θ, we have the following decomposition:

g = h⊕m = m1 ⊕
∑

α∈spec θ

mα.

Lemma 2. For this decomposition we have

[mα, mβ] ⊂ mαβ + mαβ,

where the subspace mαβ (respectively, mαβ) is trivial if αβ (respec-
tively, αβ) doesn’t belong to spec θ (over C).

Using this lemma and other facts, we obtain

Theorem 18. Let G/H be a regular Φ-space with naturally reductive
metric g, fα the base canonical f -structure (i.e. mα is an image of
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fα). Suppose α satisfies any of two conditions: (1) mod α = 1, (2)
αα /∈ spec θ. Then fα is a nearly Kähler f -structure.

As a particular case, it immediately follows

Corollary 6. Any base canonical f -structure fi on naturally reductive
homogeneous k-symmetric space is a nearly Kähler f -structure.
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