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The aim of the present talk is to describe connected Kähler
surfaces (M, g , J) admitting a global, 2-dimensional, J-invariant
distribution D having the following property: The holomorphic
curvature K (π) = R(X , JX , JX ,X ) of any J-invariant 2-plane
π ⊂ TxM, where X ∈ π and g(X ,X ) = 1, depends only on the
point x and the number |XD| =

√

g(XD,XD), where XD is an
orthogonal projection of X on D. In this case we have

R(X , JX , JX ,X ) = φ(x , |XD|)

where φ(x , t) = a(x) + b(x)t2 + c(x)t4 and a, b, c are smooth
functions on M. Also R = aΠ+ bΦ+ cΨ for certain curvature
tensors Π,Φ,Ψ ∈

⊗4
X
∗(M) of Kähler type. The investigation of

such manifolds, called QCH Kähler manifolds, was started by G.
Ganchev and V. Mihova in [G-M-1],[G-M-2]. In our paper [J-2] we
used their local results to obtain a global classification of such
manifolds under the assumption that dimM = 2n ≥ 6. By E we
shall denote the 2-dimensional distribution which is the orthogonal

Wlodzimierz Jelonek Kähler surfaces with quasi constant holomorphic curvature
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complement of D in TM. In the present paper we show that a
Kähler surface (M, g , J) is a QCH manifold with respect to a
distribution D if and only if is a QCH manifold with respect to the
distribution E . We also prove that (M, g , J) is a QCH Kähler
surface if and only if the antiselfdual Weyl tensor W− is
degenerate and there exist a negative almost complex structure J
which preserves the Ricci tensor Ric of (M, g , J) i.e.
Ric(J., J .) = Ric(., .) and such that ω = g(J ., .) is an eigenvector
of W− corresponding to simple eigenvalue of W−. Equivalently
(M, g , J) is a QCH Kähler surface iff it admits a negative almost
complex structure J satisfying the Gray second condition
R(X ,Y ,Z ,W )− R(JX , JY ,Z ,W ) =
R(JX ,Y , JZ ,W ) + R(JX ,Y ,Z , JW ). In [A-C-G-1] Apostolov,
Calderbank and Gauduchon have classified weakly selfdual Kähler
surfaces, extending the result of Bryant who classified self-dual
Kähler surfaces [B]. Weakly self-dual Kähler surfaces turned out to
be of Calabi type and of orthotoric type or surfaces with parallel

Wlodzimierz Jelonek Kähler surfaces with quasi constant holomorphic curvature
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Ricci tensor.
We show that any Calabi type Kähler surfce and every orthotoric
Kähler surface is a QCH manifold. In both cases the opposite
complex strucure J is conformally Kähler. We also classify locally
homogeneous QCH Kähler surfaces.
Let (M, g , J) be a 4-dimensional Kähler manifold with a
2-dimensional J-invariant distribution D. Let X(M) denote the
algebra of all differentiable vector fields on M and Γ(D) denote the
set of local sections of the distribution D. If X ∈ X(M) then by X [

we shall denote the 1-form φ ∈ X
∗(M) dual to X with respect to g ,

i.e. φ(Y ) = X [(Y ) = g(X ,Y ). By ω we shall denote the Kähler
form of (M, g , J) i.e. ω(X ,Y ) = g(JX ,Y ). Let (M, g , J) be a
QCH Kähler surface with respect to J − invariant 2-dimensional
distribution D. Let us denote by E the distribution D⊥, which is a
2-dimensional, J-invariant distribution. By h,m respectively we
shall denote the tensors h = g ◦ (pD × pD),m = g ◦ (pE × pE),
where pD, pE are the orthogonal projections on D, E respectively. It

Wlodzimierz Jelonek Kähler surfaces with quasi constant holomorphic curvature
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follows that g = h +m. Let us define almost complex structure J
by J |E = −J|E and J |D = J|D. Let θ(X ) = g(ξ,X ) and
Jθ = −θ ◦ J which means that Jθ(X ) = g(Jξ,X ). For every
almost Hermitian manifold (M, g , J) the self-dual Weyl tensor W+

decomposes under the action of the unitary group U(2). We have
∧∗ M = R⊕ LM where LM = [[

∧(0,2)M]] and we can write W+

as a matrix with respect to this block decomposition

W+ =

(

κ
6 W+

2

(W+
2 )∗ W+

3 − κ
12 Id|LM

)

where κ is the conformal scalar curvature of (M, g , J) (see
[A-A-D]). The selfdual Weyl tensor W+ of (M, g , J) is called
degenerate if W2 = 0,W3 = 0. In general the self-dual Weyl tensor
of 4-manifold (M, g) is called degenerate if it has at most two
eigenvalues as an endomorphism W+ :

∧+M →
∧+M. We say

that an almost Hermitian structure J satisfies the second Gray
Wlodzimierz Jelonek Kähler surfaces with quasi constant holomorphic curvature
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curvature condition if

R(X ,Y ,Z ,W )− R(JX , JY ,Z ,W ) = R(JX ,Y , JZ ,W )

+R(JX ,Y ,Z , JW )

which is equivalent to Ric(J, J) = Ric and W+
2 = W+

3 = 0. Hence
(M, g , J) satisfies the second Gray condition if J preserves the
Ricci tensor and W+ is degenerate. We shall denote by Ric0 and
ρ0 the trace free part of the Ricci tensor Ric and the Ricci form ρ

respectively. An ambikähler structure on a real 4-manifold consists
of a pair of Kähler metrics (g+, J+, ω+) and (g−, J−, ω−) such that
g+ and g− are conformal metrics and J+ gives an opposite
orientation to that given by J− (i.e the volume elements 1

2ω+ ∧ ω+

and 1
2ω− ∧ ω− have opposite signs).

We shall recall some results from [G-M-1]. Let

R(X ,Y )Z = ([∇X ,∇Y ]−∇[X ,Y ])Z (1)
Wlodzimierz Jelonek Kähler surfaces with quasi constant holomorphic curvature
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and let us write

R(X ,Y ,Z ,W ) = g(R(X ,Y )Z ,W ).

If R is the curvature tensor of a QCH Kähler manifold (M, g , J),
then there exist functions a, b, c ∈ C∞(M) such that

R = aΠ+ bΦ+ cΨ, (2)

where Π is the standard Kähler tensor of constant holomorphic
curvature i.e.

Π(X ,Y ,Z ,U) =
1

4
(g(Y ,Z )g(X ,U)− g(X ,Z )g(Y ,U) (3)

+g(JY ,Z )g(JX ,U)− g(JX ,Z )g(JY ,U)− 2g(JX ,Y )g(JZ ,U)),

the tensor Φ is defined by the following relation

Wlodzimierz Jelonek Kähler surfaces with quasi constant holomorphic curvature
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Φ(X ,Y ,Z ,U) =
1

8
(g(Y ,Z )h(X ,U)− g(X ,Z )h(Y ,U) (4)

+g(X ,U)h(Y ,Z )− g(Y ,U)h(X ,Z ) + g(JY ,Z )h(JX ,U)

−g(JX ,Z )h(JY ,U) + g(JX ,U)h(JY ,Z )− g(JY ,U)h(JX ,Z )

−2g(JX ,Y )h(JZ ,U)− 2g(JZ ,U)h(JX ,Y ))

and finally

Ψ(X ,Y ,Z ,U) = −h(JX ,Y )h(JZ ,U) = −(hJ ⊗ hJ)(X ,Y ,Z ,U).
(5)

where hJ(X ,Y ) = h(JX ,Y ). Let V = (V , g , J) be a real 2n
dimensional vector space with complex structure J which is
skew-symmetric with respect to the scalar product g on V . Let
assume further that V = D ⊕ E where D is a 2-dimensional,
J-invariant subspace of V , E denotes its orthogonal complement in

Wlodzimierz Jelonek Kähler surfaces with quasi constant holomorphic curvature
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V . Note that the tensors Π,Φ,Ψ given above are of Kähler type.
It is easy to check that for a unit vector X ∈ V Π(X , JX , JX ,X ) =
1,Φ(X , JX , JX ,X ) = |XD |

2,Ψ(X , JX , JX ,X ) = |XD |
4, where XD

means an orthogonal projection of a vector X on the subspace D
and |X | =

√

g(X ,X ). It follows that for a tensor (2.2) defined on
V we have

R(X , JX , JX ,X ) = φ(|XD |)

where φ(t) = a + bt2 + ct4.
Let J, J be hermitian, opposite orthogonal structures on a
Riemannian 4-manifold (M, g) such that J is a positive almost
complex structure. Let E = ker(JJ − Id),D = ker(JJ + Id) and let
the tensors Π,Φ,Ψ be defined as above where h = g(pD, pD). Let
us define a tensor K = 1

6Π−Φ+Ψ. Then K is a curvature tensor,
b(K ) = 0, c(K ) = 0 where b is Bianchi operator and c is the Ricci
contraction. Define the endomorphism K :

∧2 M →
∧2M by the

formula g(Kφ,ψ) = −K (φ,ψ) (see (2.1)). Then we have

Wlodzimierz Jelonek Kähler surfaces with quasi constant holomorphic curvature
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Lemma

The tensor K satisfies K (
∧+M) = 0. Let φ,ψ ∈

∧−M be the
local forms orthogonal to ω such that g(φ, φ) = g(ψ,ψ) = 2 and
g(φ,ψ) = 0. Then K (ω) = 1

3ω,K (φ) = −1
6φ,K (ψ) = −1

6ψ.

Proof.

A straightforward computation.

In the special case of a Kähler surface (M, g , J) we get for a QCH
manifold (M, g , J)

Wlodzimierz Jelonek Kähler surfaces with quasi constant holomorphic curvature
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Proposition

Let (M, g , J) be a Kähler surface which is a QCH manifold with
respect to the distribution D. Then (M, g , J) is also QCH
manifold with respect to the distribution E = D⊥ and if Φ′,Ψ′ are
the above tensors with respect to E then

R = (a + b + c)Π− (b + 2c)Φ′ + cΨ′. (6)

Proof.

Let us assume that
X ∈ TM, |X | = 1.

Then if α = |XD|, β = ||XE || then 1 = α2 + β2. Hence
R(X , JX , JX ,X ) = a+ bα2 + cα4 = a+ b(1− β2) + c(1− β2)2 =
a + b + c − (b + 2c)β2 + cβ4.

If (M, g , J) is a QCH Kähler surface then one can show that the
Wlodzimierz Jelonek Kähler surfaces with quasi constant holomorphic curvature
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Ricci tensor ρ of (M, g , J) satisfies the equation

ρ(X ,Y ) = λm(X ,Y ) + µh(X ,Y ) (7)

where λ = 3
2a +

b
4 , µ = 3

2a+
5
4b + c are eigenvalues of ρ (see

[G-M-1], Corollary 2.1 and Remark 2.1.) In particular the
distributions E ,D are eigendistributions of the tensor ρ
corresponding to the eigenvalues λ, µ of ρ. The Kulkarni-Nomizu
product of two symmetric (2, 0)-tensors h, k ∈

⊗2 TM∗ we call a
tensor h� k defined as follows:

h� k(X ,Y ,Z ,T ) = h(X ,Z )k(Y ,T ) + h(Y ,T )k(X ,Z )

−h(X ,T )k(Y ,Z )− h(Y ,Z )k(X ,T ).

Similarly we define the Kulkarni-Nomizu product of two 2-forms
ω, η

ω � η(X ,Y ,Z ,T ) = ω(X ,Z )η(Y ,T ) + ω(Y ,T )η(X ,Z )
Wlodzimierz Jelonek Kähler surfaces with quasi constant holomorphic curvature
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−ω(X ,T )η(Y ,Z )− ω(Y ,Z )η(X ,T ).

Then b(ω � η) = −2
3ω ∧ η where b is the Bianchi operator. In fact

3b(ω � η)(X ,Y ,Z ,T ) = ω(X ,Z )η(Y ,T ) + ω(Y ,T )η(X ,Z )

−ω(X ,T )η(Y ,Z )

−ω(Y ,Z )η(X ,T ) + ω(Y ,X )η(Z ,T ) + ω(Z ,T )η(Y ,X )

−ω(Y ,T )η(Z ,X )− ω(Z ,X )η(Y ,T ) + ω(Z ,Y )η(X ,T )

+ω(X ,T )η(Z ,Y )− ω(Z ,T )η(X ,Y )− ω(X ,Y )η(Z ,T )

= −2ω ∧ η(X ,Y ,Z ,T ).

Note that

Π = −
1

4
(
1

2
(g � g + ω � ω) + 2ω ⊗ ω)), (8)

Wlodzimierz Jelonek Kähler surfaces with quasi constant holomorphic curvature



Introduction.
Almost complex structure J.

Curvature tensor of a QCH Kähler surface.

Φ = −
1

8
(h � g + hJ � ω + 2ω ⊗ hJ + 2hJ ⊗ ω), (9)

Ψ = −hJ ⊗ hJ , (10)

where ω = g(J., .) is the Kähler form. Note that
b(Ψ) = 1

3hJ ∧ hJ = 0 since hJ = e1 ∧ e2 is primitive, where e1, e2 is
an orthonormal basis in D.

Wlodzimierz Jelonek Kähler surfaces with quasi constant holomorphic curvature
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Theorem

Let (M, g , J) be a Kähler surface. If (M, g , J) is a QCH manifold
then W− = c(16Π− Φ+Ψ) and W− is degenerate. The 2-form ω

is an eigenvector of W− corresponding to a simple eigenvalue of
W− and J preserves the Ricci tensor. On the other hand let us
assume that (M, g , J) admits a negative almost complex structure
J such that Ric(J, J) = Ric. Let
E = ker(JJ − Id),D = ker(JJ + Id). If W− = κ

2 (
1
6Π− Φ+Ψ) or

equivalently if the half-Weyl tensor W− is degenerate and ω is an
eigenvector of W− corresponding to a simple eigenvalue of W−

then (M, g , J) is a QCH manifold.

Note that for a Kähler surface (M, g , J) the Bochner tensor
coincides with W− and we have

Wlodzimierz Jelonek Kähler surfaces with quasi constant holomorphic curvature
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R = −
τ

12
(
1

4
(g � g + ω � ω) + ω ⊗ ω)

−
1

4
(
1

2
(Ric0 � g + ρ0 � ω) + ρ0 ⊗ ω + ω ⊗ ρ0) +W−.

If (M, g , J) is a QCH Kähler surface then Ric = λm + µh where
λ = 3

2a+
b
4 , µ = 3

2a +
5
4b + c . Consequently

Ric0 = −b+c
2 m + b+c

2 h = δh − δm where δ = b+c
2 . Hence

Ric0 = 2δh − δg . Hence we have

R = −
τ

12
(
1

4
(g � g + ω � ω) + ω ⊗ ω)

−
1

4
(
1

2
((2δh − δg) � g + (2δhJ − δω) � ω) + (2δhJ − δω) ⊗ ω+

ω ⊗ (2δhJ − δω)) +W−.

Consequently

R =
τ

6
Π + 2δΦ − δΠ +W− = (a −

c

6
)Π + (b + c)Φ +W−

Wlodzimierz Jelonek Kähler surfaces with quasi constant holomorphic curvature
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and aΠ+ bΦ+ cΨ = (a − c
6)Π + (b + c)Φ +W− hence

W− = c(16Π− Φ+Ψ). It follows that W− is degenerate and ω is
an eigenvalue of W− corresponding to the simple eigenvalue of
W−. It is also clear that Ric(J, J) = Ric .
On the other hand let us assume that a Kähler surface (M, g , J)
admits a negative almost complex structure J preserving the Ricci
tenor Ric and such that W− is degenerate with eigenvector ω
corresponding to the simple eigenvalue of W−. Equivalently it
means that J satisfies the second Gray condition of the curvature
i.e. R(X ,Y ,Z ,W )− R(JX , JY ,Z ,W ) =
R(JX ,Y , JZ ,W ) + R(JX ,Y ,Z , JW ). Then
W− = κ

2 ((
1
6Π− Φ+Ψ). If Ric0 = δ(h −m) then as above

R = τ
6Π+ 2δΦ − δΠ +W−. Consequently

R = ( τ6 − δ)Π + 2δΦ + κ
2 (

1
6Π−Φ+Ψ) and consequently

R = (
τ

6
− δ +

κ

12
)Π + (2δ −

κ

2
)Φ +

κ

2
Ψ. (11)

Wlodzimierz Jelonek Kähler surfaces with quasi constant holomorphic curvature
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Remark

Note that κ is the conformal scalar curvature of (M, g , J). The
Bochner tensor of QCH manifold was first identified in [G-M-2].

Corollary

A Kähler surface (M, g , J) is a QCH manifold iff it admits a
negative almost complex structure J satisfying the second Gray
condition of the curvature i.e.

R(X ,Y ,Z ,W )− R(JX , JY ,Z ,W ) =

R(JX ,Y , JZ ,W ) + R(JX ,Y ,Z , JW )

The J-invariant distribution D with respect to which (M, g , J) is a
QCH manifold is given by D = ker(JJ − Id) or by
D = ker(JJ + Id).

Wlodzimierz Jelonek Kähler surfaces with quasi constant holomorphic curvature
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Theorem

Let us assume that (M, g , J) is a Kähler surface admitting a
negative Hermitian structure J such that Ric(J, J) = Ric. Then
(M, g , J) is a QCH manifold.

Proof.

If a Hermitian manifold (M, g , J) has a J-invariant Ricci tensor Ric
then the tensor W+ is degenerate (see [A-G]).

Remark

If a Kähler surface (M, g , J) is compact and admits a negative
Hermitian structure J as above then (M, g , J) is locally
conformally Kähler and hence globally conformally Kähler if b1(M)
is even. Thus (M, g , J) is ambiKähler since b1(M) is even.

Now we give examples of QCH Kähler surfaces. First we give (see
Wlodzimierz Jelonek Kähler surfaces with quasi constant holomorphic curvature
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[A-C-G-1])

Definition

A Kähler surface (M, g , J) is said to be of Calabi type if it admits
a non-vanishing Hamiltonian Killing vector field ξ such that the
almost Hermitian pair (g , I ) -with I equal to J on the distribution
spanned by ξ and Jξ and −J on the orthogonal distribution - is
conformally Kähler.

Every Kähler surface of Calabi type is given locally by

g = (az − b)gΣ + w(z)dz2 + w(z)−1(dt + α)2, (12)

ω = (az − b)ωΣ + dz ∧ (dt + α), dα = aωΣ

where ξ = ∂
∂t .

The Kähler form of Hermitian structure I is given by
ωI = (az − b)ωΣ − dz ∧ (dt + α) and the Kähler metric
corresponding to I is g− = (az − b)2g .

Wlodzimierz Jelonek Kähler surfaces with quasi constant holomorphic curvature
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If a 6= 0 then the metric (*) is a product metric. If a 6= 0 then we
set a = 1, b = 0 and write w(z) = z

V (z) hence

g = zgΣ +
z

V (z)
dz2 +

V (z)

z
(dt + α)2, (13)

ω = zωΣ + dz ∧ (dt + α), dα = ωΣ

It is known that for a Kähler surface of Calabi type of non-product
type we have ρ0 = δωI where δ = − 1

4z (τΣ + (Vz

z2
)zz

2) (see
[A-C-G-1]) and consequently Ric(I , I ) = Ric . This last relation
remains true in the product case metric. Hence we have

Theorem

Every Kähler surface of Calabi type is a QCH Kähler surface.

Wlodzimierz Jelonek Kähler surfaces with quasi constant holomorphic curvature
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Definition

A Kähler surface (M, g , J) is ortho-toric if it admits two
independent Hamiltonian Killing vector fields with Poisson
commuting momentum maps ξη and ξ + η such that dξ and dη
are orthogonal.

An explicit classification of ortho-toric Kähler metrics is given in
[A-C-G]. We have (this Proposition is proved in [A-C-G], Prop.8 )

Wlodzimierz Jelonek Kähler surfaces with quasi constant holomorphic curvature
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Proposition

The almost Hermitian structure (g , J, ω) defined by

g = (ξ−η)(
dξ2

F (ξ)
−

dη2

G (η)
)+

1

ξ − η
(F (ξ)(dt+ηdz)2−G (η)(dt+ξdz)2

(14)

Jdξ =
F (ξ)

ξ − η
(dt + ηdz), Jdt = −

ξdξ

F (ξ)
−

ηdη

G (η)
(15)

Jdη = −
G (η)

ξ − η
(dt + ξdz), Jdz =

dξ

F (ξ)
+

dη

G (η)
,

ω = dξ ∧ (dt + ηdz) + dη ∧ (dt + ξdz) (16)

is orthotoric where F ,G are any functions of one variable. Every
orthotoric Kähler surface (M, g , J) is of this form.

Any orthotoric surface has a negative Hermitian structure J, whose
Wlodzimierz Jelonek Kähler surfaces with quasi constant holomorphic curvature
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Kähler form ω is given by

ω = dξ ∧ (dt + ηdz)− dη ∧ (dt + ξdz)

and

Jdξ = Jdξ =
F (ξ)

ξ − η
(dt + ηdz), Jdt = −

ξdξ

F (ξ)
+

ηdη

G (η)
(17)

Jdη = Jdη = −
G (η)

ξ − η
(dt + ξdz), Jdz =

dξ

F (ξ)
−

dη

G (η)
,

The structure (g− = (ξ − η)2g , J) is Kähler. We also have

ρ0 = δω where δ = F ′(ξ)−G ′(η)
(2(ξ−η)2

− F ′′(ξ)+G ′′(η)
(4(ξ−η) .

In particular the Hermitian strucure J preserves Ricci tensor Ric .
Hence we get

Theorem

Every orthotoric Kähler surface is a QCH Kähler surface.

Wlodzimierz Jelonek Kähler surfaces with quasi constant holomorphic curvature
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Note that both Calabi type and orthotoric Kähler surfaces are
ambikähler. On the other hand we have

Theorem

Let (M, g , J) be ambi-Kähler surface which is a QCH manifold.
Then locally (M, g , J) is orthotoric or of Calabi type or a product
of two Riemannian surfaces or is an anti-selfdual Einstein-Kähler
surface.

Wlodzimierz Jelonek Kähler surfaces with quasi constant holomorphic curvature
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Proof.

(We follow [A-C-G-2]). Let us denote by g− the second Kähler
metric. Let us assume that g− 6= g . Then g = φ−2g− and the
field X = gradω−

φ is a Killing vector field LXg = LX g− = 0 and is
holomorphic with respect to J). We shall show that X is also
holomorphic with respect to J. In fact Ric0 = δg(JJ , .) and
LXRic = 0, LX δ = 0. Hence 0 = δg((LX J)J , .) and consequently
LX J = 0 in U = {x : Ric0(x) 6= 0}. If (M, g) is Einstein then
W+ 6= 0 everywhere or (M, g , J) is anti-selfdual. In the first case
X preserves the simple eigenspace of W+ and hence ω,
cosequently LX J = 0.
Note that X = Jgradgψ where ψ = − 1

φ . Since LXω = 0 we have

dXyω = 0 and consequently the 1-form JJdψ is closed and locally
equals 1

2dσ. Thus the two form Ω = 3
2σω + ψ3ω−, where ω− is

the Kähler form of (M, g−, J), is a Hamiltonian form in the sense
of [A-C-G-1] and the result follows from the classification in
[A-C-G-1]. This form is defined globally if H1(M) = 0.
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Remark

Note that in the compact case every Killing vector field on a
Kähler surface is holomorphic. If (M, g , J) is an Einstein Kähler
anti-selfdual then in the case where it is not conformally flat the
manifold (M, g , J) is a self-dual Einstein Hermitian conformal to
self-dual Kähler metric. Such a metric must be either orthotoric or
of Calabi type. Thus (M, g , J) is of Calabi type if (M, g , J) is of
Calabi type, however (M, g , J) can not be orthotoric if (M, g , J) is
orthotoric.

Now we shall investigate Einstein QCH Kähler surfaces.
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Theorem

Let (M, g , J) be a Kähler-Einstein surface. Then (M, g , J) is a
QCH Kähler surface if and only if it admits a negative Hermitian
structure J or it has constant holomorphic curvature and admits
any negative almost complex structure. If (M, g , J) is QCH and
the second case does not hold then J is conformally Kähler hence
(M, g , J) is ambiKähler.

Proof.

If an Einstein 4-manifold (M, g) admits a degenerate tensor W−

then W− = 0 or W− 6= 0 on the whole of M. In the second case
by the result of Derdzinski it admits a Hermitian structure J which

is conformally Kähler and the metric (g(W−,W−))
1
3 g is a Kähler

metric with respect to J .
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Remark

(Compare [A-C-G-2]). If (M, g , J) is a QCH Kähler Einstein
surface which is not anti-selfdual then in the case H1(M) = 0 on
(M, g , J) there is defined global Hamiltonian two form and on the
open and dense subset U of M the metric g is:
(a) a Kähler product metric of two Riemannian surfaces of the
same Gauss curvature
(b) Kähler Einstein metric of Calabi type over a Riemannian
surface (Σ, gΣ) of constant Gauss curvature k of the form (2.13)
where V (z) = a1z

3 + kz2 + a2
(c) Kähler Einstein ambitoric metric of parabolic type (see
[A-C-G-2], section 5.4.
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Theorem

Let (M, g , J) be a self-dual Kähler surface with Ric0 6= 0
everywhere on M. Then (M, g , J) is a QCH Kähler surface with
Hermitian complex structure J.

Proof.

We show as in Th.1 that R = τ
6Π + 2δΦ − δΠ where ρ0 = δω.

Note that in U = {x : Ric0 6= 0} the negative structure J is
uniquely determined and is Hermitian in U (see Prop.4 in
[A-G]).
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Remark

Note that a selfdual Kähler surface (M, g , J) is QCH if admits any
negative almost complex structure J preserving the Ricci tensor
Ric . For example CP

2 with standard Fubini-Studi metric is selfdual
however is not QCH since it does not admit any negative almost
complex structure. However the manifold M = CP

2 − {p0} for any
point p0 ∈ CP

2 is QCH and admits a negative Hermitian complex
structure (see [J-3]). In [D-2] there are constructed many examples
of self-dual Kähler surfaces with Ric0 6= 0 hence QCH Kähler
self-dual surfaces. Every self-dual Kähler metric is weakly selfdual.
These metrics were classified by Bryant in [B]. From [A-C-G-1] it
follows that self dual Kähler metrics are orthotoric or of Calabi
type and in fact are ambi-Kähler. They are
(a) Kähler self-dual metrics of Calabi type over a Riemannian
surface (Σ, gΣ) of constant scalar curvature k where
V (z) = a1z

4 + a2z
3 + kz2
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Remark

(b) Kähler self-dual metrics of orthotoric type where
F (x) = lx3 + Ax2 + Bx ,G (x) = lx3 + Ax2 + Bx
(c) complex space forms and a product Σc ×Σ−c of Riemann
surfaces of constant scalar curvatures c and −c .

Lemma

Let M be a connected QCH Kähler surface which is not Einstein.
Then the following conditions are equivalent:
(a) The scalar curvature τ of (M, g , J) is constant and J is almost
Kähler
(b) The eigenvalues λ, µ of Ric are constant.
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Proof.

(a)⇒(b) Note that ρ = λω1 + µω2 where λ, µ are eigenvalues of
Ric and ω2 = hJ , ω1 = mJ . Note that dω1 + dω2 = 0 and

(µ− λ)dω1 = dλ ∧ ω1 + dµ ∧ ω2 (18)

Note that J is almost Kähler if and only if dω1 = 0. Hence from
(2.7) we get pD(∇λ) = 0, pE (∇µ) = 0. Since τ is constant we get
∇λ = −∇µ in an open set U = {x : λ(x) 6= µ(x)}. Thus
∇λ = ∇µ = 0 in U and consequently U = M and λ, µ are
constant.
(b) ⇒ (a) This implication is trivial.

Now we give a classification of locally homogeneous QCH Kähler
surfaces.
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Proposition

Let (M, g , J) be a QCH locally homogeneous manifold. Then the
following cases occur:
(a) (M, g , J) has constant holomorphic curvature (hence is locally
symmetric and self-dual)
(b) (M, g , J) is locally a product of two Riemannian surfaces of
constant scalar curvature
(c) (M, g , J) is locally isometric to a unique 4-dimensional proper
3-symmetric space.
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Proof.

If (M, g) is Einstein locally homogeneous 4-manifold then is locally
symmetric (see [Jen]). A locally irreducible locally symmetric
Kähler surface is self-dual.(see [D-1]). If (M, g) is not Einstein
then using Lemma we see that (M, g , J) is an almost Kähler
manifold satisfying the Gray condition G2. Hence ||∇J || is
constant on M and in the case ||∇J|| 6= 0 it is strictly almost
Kähler manifold satisfying G2. Such manifolds are classified in
[A-A-D] and are locally isometric to a proper 3-symmetric space.
Note that they are Kähler in an opposite orientation. If ||∇J|| = 0
then the case (b) holds.
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Remark

A Riemannian 3-symmetric space is a manifold (M, g) such that
for each x ∈ M there exists an isometry θx ∈ Iso(M) such that
θ3x = Id and x is an isolated fixed point. On a such manifold there
is a natural canonical g -ortogonal almost complex structure J such
that all θx are holomorphic with respect to J . Such structure in
dimension 4 is almost Kähler and satisfies the Gray condition G2.
The example of 3-symmetric 4-dimensional Riemannian space with
non-itegrable structure J was constructed by O. Kowalski in
[Ko],Th.VI.3. This is the only proper generalized symmetric space
in dimension 4. This example is defined on R

4 = {x , y , u, v} by
the metric

g = (−x+
√

x2 + y2 + 1)du2+(x+
√

x2 + y2 + 1)dv2−2ydu�dv
(19)

+[
(1 + y2)dx2 + (1 + x2)dy2 − 2xydx � dy

1 + x2 + y2
]

It admits a Kähler structure J in an opposite orientation.Wlodzimierz Jelonek Kähler surfaces with quasi constant holomorphic curvature
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Proposition

Let (M, g , J) be a QCH Kähler surface. If (M, g) is conformally
Einstein then the almost Hermitian structure J is Hermitian or
(M, g , J) is self-dual.

Proof.

Let us assume that (M, g1) is an Einstein manifold where
g1 = f 2g . Then (M, g1) is an Einstein manifold with degenerate
half-Weyl tensor W−. Consequently W− = 0 or W− 6= 0
everywhere. In the second case the metric

(g1(W
−,W−))

1
3 g1

is a Kähler metric with respect to J. Thus J is Hermitian and
conformally Kähler.
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Remark

Every QCH Kähler surface is a holomorphically pseudosymmetric
Kähler manifold. (see [O],[J-1] ). In fact from [J-1] it follows that
R .R = (a + b

2 )Π.R . Hence in the case of QCH Kähler surfaces we
have

R .R =
1

6
(τ − κ)Π.R (20)

where τ is the scalar curvature of (M, g , J) and κ is the conformal
scalar curvature of (M, g , J). Note that (2.19) is the obstruction
for a Kähler surface to have a negative almost complex J structure
satisfying the Gray condition (G2). In an extremal situation where
(M, g , J) satisfies the Gray (G1) condition we have R .R = 0.

Now we classify QCH Kähler surfaces for which a, b, c are all
constant. Then λ, µ are constant and if (M, g) is not Einstein the
almost complex structure J is almost Kähler. Hence (M, g , J) is a
G2 almost Kähler manifold. Consequently |∇ω| is constant and
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(M, g , J) is a product of two Riemannian surfaces of constant
scalar curvature or is a proper 3-symmetric space. If (M, g) is
Einstein then κ = 2c is constant and |W−|2 = 1

24κ
2 is constant.

Thus κ = 0 and (M, g , J) has constant holomorphic curvature (is a
real space form) or by [D-1] the manifold (M, g , J) is Kähler hence
(M, g , J) is a product of two Riemannian surfaces of constant
scalar curvature. Note that for a proper 3-symmetric space we
have δ = κ

4 for the distribution D perpendicular to the Kähler
nullity of J(see [A-A-D]), thus b = 2δ − κ

2 = 0 and
a = 1

6(τ − κ) = −1
2 |∇ω|

2. Since µ = 0 c = −3
2a and τ = −κ

where κ = 3
2 |∇ω|

2. Hence

R .R = −
κ

3
Π.R (21)

where κ = 3
2 |∇ω|

2 is constant. Summarizing we have proved
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Proposition

Let us assume that (M, g , J) is a QCH Kähler surface with
constant a, b, c. Then the following cases occur:
(a) (M, g , J) has constant holomorphic curvature (hence is locally
symmetric and self-dual)
(b) (M, g , J) is locally a product of two Riemannian surfaces of
constant scalar curvature
(c) (M, g , J) is locally isometric to a unique 4-dimensional proper
3-symmetric space and a = −1

3κ, b = 0, c = 1
2κ where κ = 3

2 |∇ω|
2

is constant scalar curvature of (M, g , J), consequently
R = −1

3κΠ + 1
2κΨ.
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Remark

We consider above the proper 3-symmetric space as a QCH
manifold with respect to the distribution D perpendicular to the
Kähler nullity of J. If we consider it as a QCH manifold with
respect to the distribution E = D⊥ then R = 1

6κΠ− κΦ′ + 1
2κΨ

′

(see Prop.1.).
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Theorem

Let (M, g , J) be a Kähler surface admitting opposite Hermitian
structure I satisfying the first Gray condition G1 which is locally
conformally Kähler. Then locally

g = zgΣ +
1

Cz
dz2 + Cz(dt + α)2

where (Σ, gΣ) is a Riemannian surface with area form ωΣ and
dα = ωΣ or (M, g , J) is a product of Riemannian surfaces or a
space form with zero holomorphic sectional curvature. The Kähler
form of (M, g , J) is Ω = zωΣ + dz ∧ (dt + α).
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Proof.

First assume that (M, g , J) is a Kähler semi-symmetric surface
foliated by 2-dimensional Euclidean space. Hence it follows that D
is totally geodesic homothetic foliation. Such foliations were
classified locally in [Ch-N]. Thus (M, g , J) is a Kähler surface of
Calabi type. From [A-C-G] it follows that κ = τ if V (z) = Cz2

where g = zgΣ + z
V (z)dz

2 + V (z)
z

(dt + α)2 is a general Calabi type
metric which is not a Kähler product. For the general case let us
note that QCH Kähler surface for which the structure I is
Hermitian and locally conformally Kähler are of Calabi type or are
orthotoric surfaces or W = 0 (see [J-4]). Semi-symmetric surfaces
with W = 0 are products of Riemannian surfuces of constant
opposite scalar curvatures (see [B]). One can easily check that
orthotoric surface can be semi-symmetric only if W = 0 which
finishes the proof.
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Theorem

Let (M, g , J) be a Kähler surface. Then the following conditions
are equivalent:
(1) There exists a vector field ξ such that ∇ξ = cI , c ∈ R− {0}
(2)There exists a vector field η such that ∇η = cJ, c ∈ R− {0}
(3) There exists a function φ ∈ C∞(M) such that Hφ = cg where
Hφ is the Hessian of φ and c ∈ R− {0},
(4) (U, g , J) is a semi-symmetric Kähler surface of Calabi type
where U is an open dense subset of M ,
(5)There exists an open and dense subset U of M such that
(U, g , J) is locally isometric to g = zgΣ + 1

Cz
dz2 + Cz(dt + α)2

where (Σ, gΣ) is a Riemannian surface with area form ωΣ and
dα = ωΣ. The Kähler form of (U, g , J) is
Ω = zωΣ + dz ∧ (dt + α).
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Proof.

Let us assume that (1) holds. It is easy to see that (1),(2) are
equivalent and (3) implies (1).
Note that ∇X Jξ = cJX so we can take η = Jξ. Let us define the
distribution D = span{ξ, Jξ}. We can assume that c = 1

2 . It is
clear that ξ is a holomorphic vector field and Jξ is a holomorphic
Killing vector field. Note that ξ, Jξ are different from zero on an
open dense subset U of M. What is more if T = ∇Jξ = 1

2J then
R(X , ξ)Y = ∇T (X ,Y ) = 0. Hence R(X ,Y )ξ = R(X ,Y )Jξ = 0
and

R(X , JX , JX ,X ) = ||XD⊥ ||4K (D⊥)

where K (D⊥) is a sectional curvature of the distribution D⊥. It
follows that (M, g , J) is a QCH Kähler surface i R = cΨ and
R .R = 0. The distribution D is totally geodesic in particular is
integrable. Since LJξg = 0, Lξg = g it follows that D is a complex
conformal foliation and the almost Hermitian structure I
determined by D is Hermitian.
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Proof.

Note that Lηg = θ(η)g on D⊥ for η ∈ Γ(D) where θ] = 1
|ξ|2
ξ.

Hence |θ| = 1
|ξ| . Vector field ξ =

1
|θ|2
θ] is holomorphic. One can

easily verify that dθ = 0 since X |θ|2 = 0 for X ∈ D⊥ since
∇X ξ =

1
2X − 1

2X ln |θ|2ξ + 1
2JX ln |θ|2Jξ for X ∈ D⊥. Hence

(M, g , J) is a semi-symmetric Kähler surface of Calabi type. Note
that since θ = −d ln |θ|2 on U it follows that if the distribution D
extends over the whole of M and consequently θ is defined on M
then 6= 0 on the whole of M and consequently U = M. Note that
the function φ = 1

|θ|2
satisfies (3) and the field ξ = ∇φ satisfies (1).

On the other hand if (M, g , J) is a semi-symmetric Kähler surface
of Calabi type then vector field ξ = 1

|θ|2
θ] satisfies ∇X ξ =

1
2X .
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Remark

It is known that the only complete Kähler surface satisfying (3) is
a Euclidean space (C2, can) with standard metric can. Let
{e1, e2, e3, e4} be a standard orthonormal basis of C2,
Je1 = e2, Je3 = e4. Then
ξ = x1e1+ y1e2+ x2e3+ y2e4, Jξ = x1e2− y1e1+ x2e4− y2e3 where
z1 = x1 + iy1, z2 + iy2 are standard complex coordinates on C

2 and
φ = 1

2(x
2
1 + y21 + x22 + y22 ). In this case we have U = C

2 − {0} and
the totally geodesic complex foliation D = span{ξ, Jξ} defines on
U a Hermitian structure I which does not extend to the whole of
C
2 and ξ(0) = 0. Hence (C2 − {0}, can) is a semisymmetric

surface of Calabi type (clearly R = 0 in this case).
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