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A bit of Hermitian geometry:
Let (M, J, g) be a Hermitian manifold, where J is a complex structure and
g is a Hermitian metric. (M, J, g) is a locally conformally Kähler (LCK)
manifold if there exists an open cover {Ui} and smooth functions fi on Ui

such that each local metric

gi = exp(−fi )g

is Kähler on Ui .
This condition is equivalent to requiring that

dω = θ ∧ ω

for some closed 1-form θ, called the Lee form.
The Lee form θ is determined by

θ = − 1

n − 1
(δω) ◦ J,

where 2n is the dimension of M.
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Given a simply connected Lie group G , a lattice on G is a discrete
subgroup Γ such that Γ\G is a compact manifold. If G is solvable
(nilpotent), we have a solvmanifold (nilmanifold).

A left-invariant LCK structure on a G  an LCK structure on Γ\G .

There are many recent results on LCK structures on solvmanifold.

Sawai (2007): if a non-toral nilmanifold admits an invariant LCK
structure, then it is a quotient of R× H2n+1, where H2n+1 is the
(2n + 1)-dimensional Heisenberg Lie group.

What happens in the non-invariant case on nilmanifolds? Not known
yet.

Kasuya (2013) proved the non-existence of Vaisman metrics is some
solvmanifolds.

Andrada, O. (2014): if g is a unimodular Lie algebra with an LCK
structure where the complex structure is abelian, that is
[X ,Y ] = [JX , JY ] then g ' R× h2n+1.
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LCS manifolds

A locally conformally symplectic (LCS) form on a manifold M is a
non-degenerate 2-form ω such that there exists an open cover {Ui} and
smooth functions fi on Ui such that

ωi = exp(−fi )ω

is a symplectic form on Ui .

This condition is equivalent to requiring that

dω = θ ∧ ω

for some closed 1-form θ, called the Lee form.

When the manifold is a Lie group and θ and ω are left invariant we obtain
 an LCS structure on the Lie algebra.
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The p-adapted cohomology:

For a Lie algebra g and a closed 1-form α on g, we have the adapted
differential operator dα:

dαβ = α ∧ β + dβ,

for β ∈
∧p g.

A p-form β is called α-closed if dαβ = 0. Since d2
α = 0, it defines the

p-adapted cohomology group Hp
α(g).

If (g, ω, θ) is a LCS Lie algebra, then

d−θω = −θ ∧ ω + dω = 0,

so ω is −θ-closed.
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Nilpotent case

Proposition (Dixmier ’55)

Let g be a nilpotent Lie algebra. For any non-trivial closed 1-form α on g,
Hp
α(g) = 0, p ≥ 2.

If a nilpotent Lie algebra g admits an LCS structure, then there exists a
1-form β such that

d−θβ = ω.

Relation with Contact structures:

Let A ∈ g such that θ(A) = 1.
We can write

g = RA⊕ ker θ.
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Since ω is non-degenerate we get that

β ∧ (dβ)n 6= 0

on ker θ. The pair (θ, β) is a contact pair.

Proposition

If g is a nilpotent Lie algebra with an LCS structure, then

dim([g, g] ∩ z) = 1.

if θ 6= 0, then 1 ≤ dim z ≤ 2.

if g is a 2-step nilpotent, then g = R× h2n+1.

Proposition

If g is a nilpotent Lie algebra with an LCS structure, then ker θ has a
contact form β|ker θ.
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6-dimensional case

Proposition

If g is a 6-dimensional real nilpotent Lie algebras with an LCS structure,
the g is isomorphic to one and only one of the following Lie algebras.

(0,0,12,13,14+23,34+52)

(0,0,12,13,14,34+52)

(0,0,0,12,14-23,15+34)

(0,0,0,12,14,15+23+24)

(0,0,0,12,14,15+24)

(0,0,0,12,13,14+35)

(0,0,0,12,23,14+35)

(0,0,0,12,23,14-35)

(0,0,0,0,12,15+34)

(0,0,0,0,12,14+25)

(0,0,0,0,0,12+34)

For example (0, 0, 0, 0, 0, 12 + 34) is the Lie algebra generated by
{e1, . . . , e6} where de6 = e1 ∧ e2 + e3 ∧ e4, that is, R× h5.
[Bazzoni-Marrero] also obtained this classification recently.
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Almost abelian

A Lie algebra is called almost abelian if it has an abelian ideal of
codimension one:

g = Rn Rn.

We have two problems:
 Do they admit LCS structures?

 Let G be the associated simply connected Lie group, does G admit any
lattice?

In order to answer the first question we will consider two cases according
to the dimension of g:
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Theorem (Andrada, - )

Let g be a unimodular almost abelian Lie algebra with dim g ≥ 6. Then g
admits an LCS structure if and only if g = RnM R2n+1 where the action
is given by

M =


µ w t

0 − µ
2n I + B

 ,

with B ∈ sp(n,R).
Moreover, g admits an LCK form if and only if w = 0 and B ∈ u(n).

Remark

The LCS forms are symplectic if and only if µ = 0.
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4-dimensional case:

g = RnM R3 where the action is given by

M =


µ a b

m
−µ

2 I + B
n

 ,

with B ∈ sl(2,R) and a, b,m, n ∈ R.

We classify up to Lie algebra isomorphism the unimodular Lie algebras of
type RnM R3 with an LCS structure.

Theorem

Let g be a unimodular almost abelian 4-dimensional Lie algebra with LCS
structure, thus g is isomorphic to one and only one of the following Lie
algebras.
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Lie algebra Lie brackets LCS form Lee form

R4 [·, ·] = 0 ω = e1 ∧ e2 + e3 ∧ e4 θ = 0

h3 × R [e1, e2] = e3 ω = e1 ∧ e2 + e3 ∧ e4 θ = −e4

n4 [e1, e2] = e3 , [e1, e3] = e4 ω = e1 ∧ e3 + e2 ∧ e4 θ = e2

r3,−1 × R [e1, e2] = e2, [e1, e3] = −e3 ω = e1 ∧ e2 + e3 ∧ e4 θ = e1

r4,λ,−(1+λ) (λ ≥ 1) [e1, e2] = e2, [e1, e3] = λe3,

[e1, e4] = −(1 + λ)e4 ω = e1 ∧ e2 + e3 ∧ e4 θ = e1

r4,−1/2 [e1, e2] = e2, [e1, e3] = e2 + e3,

[e1, e4] = −2e4 ω = e1 ∧ e2 + e3 ∧ e4 θ = e1

r′3,0 × R [e1, e3] = e4, [e1, e4] = −e3 ω = e1 ∧ e3 + e2 ∧ e4 θ = e2

r′4,λ,−λ/2 (λ > 0) [e1, e2] = λe2, [e1, e3] = −λ2 e3 − e4,

[e1, e4] = e3 − λ
2
e4 ω = e1 ∧ e2 + e3 ∧ e4 θ = λe1

Only R4, h3 × R and r′4,λ,−λ/2 admit an LCK structure.

Idea of the proof:

In order to do this we consider different cases according to the eigenvalues
of the matrix B ∈ sl(2,R) and the matrix M. And we use the clasification
of 4-dimensional solvable Lie algebras in [ABDO] and the following Lemma

Lemma

Two Lie algebras gA = RnA Rn and gB = RnB Rn are isomorphic if and
only if there exists c 6= 0 such that A and cB are conjugate.
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Lattices

Theorem (Milnor)

If G admits a lattice then it is unimodular, that is, tr adX = 0 for all X ∈ g.

For nilpotent Lie groups:

Theorem (Malcev)

Let G be a simple connected nilpotent Lie group, then there exists a
lattice on G if and only if the Lie algebra g admits a basis such that the
structure constants in this basis are rational.

For almost abelian Lie groups:

Proposition (Bock)

Let G = Rnφ R2n+1 be an almost abelian Lie group. Then G admits a
lattice if and only if there exists a t0 6= 0 such that φ(t0) can be
conjugated to an integer matrix.
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Lattices in dimension 4:

Theorem

Let G be a simply connected 4-dimensional unimodular almost abelian Lie
group with a left-invariant LCS structure, and let g denote its Lie algebra.
If G admits lattices then g is isomorphic to one of the following Lie
algebras:

∗ R4

∗ h3 × R
∗ n4

∗ r3,−1 × R
∗ r4,λ,−(1+λ) for countably many values of λ > 1

∗ r′3,0 × R
∗ r′4,λ,−λ/2 for countably many values of λ > 0.
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Lattices in dim ≥ 6:

Recall that for a unimodular almost abelian Lie group G = Rnφ R2n+1,
equipped with a left-invariant LCS structure, the action is given by
φ(t) = et adf1 , where R is generated by f1.

φ(t) = et adf1 |R2n+1 =


etµ

e−
tµ
2n etB

 ,

for some B ∈ sp(n,R). We may assume w = 0.

LCK case: G admits no lattices. This is a consequence of:

Lemma

Let p(x) = x2n+1 −m2nx
2n + m2n−1x

2n−1 + · · ·+ m1x − 1 be a
polynomial with mj ∈ Z and n > 1. Let x0, . . . , x2n be the roots of p,
where x0 ∈ R is a simple root. If |x1| = · · · = |x2n|, then x0 = 1.
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LCS case: Let g be an almost abelian Lie algebra given by
g = Rf1 nM R2n+1 with

M =



1

0
− 1

n
1
n
− 2

n
2
n

. . .

−1


.

g admits an LCS form.
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G = Rnφ R2n+1

φ(t) = etM =



et

1

e−
t
n

e
t
n

e−
2t
n

e
2t
n

. . .

e−t


.

Given m ∈ Z,m > 2 we take

tm = n arccosh(
m

2
) > 0

then φ(tm) is conjugated to an integer matrix.
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The lattice is
Γm := tmZ n P−1Z2n+1,

where P satisfies that Pφ(tm)P−1 is an integer matrix.

Therefore Γm\G is a solvmanifold with an LCS structure.

Two questions:

1 Are the solvmanifolds Γm1\G and Γm2\G diffeomorphic?

2 Are they the only examples in dimension 6?

Thank you for you attention!!
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