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SYMPLECTIC MANIFOLDS

Closed nondegenerate 2-form ω on M2n

Local model :
∑
dpi ∧ dqi on R2n

EXAMPLES

Cn, cotangent bundles T ∗N

coadjoint orbit of G (flag manifold)

Kähler manifolds:

metric g, complex structure I : TM → TM

ω(X,Y ) = g(IX, Y ).
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HYPERKAHLER MANIFOLDS

Metric g, complex structures I, J,K with

quaternionic relations

IJ = K = −JI etc

Now three symplectic forms

ω1(X,Y ) = g(IX, Y ) : ω2(X,Y ) = g(JX, Y )

ω3(X,Y ) = g(KX,Y )

Riemannian data ; no local model

Examples?
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MOMENT MAPS AND SYMPLECTIC

REDUCTION

(M2n, ω) with S1 action: Killing field X

1− form ω(X, .) = ιXω

0 = LXω = dιXω + ιXdω = dιXω.

In good cases:

iXω = dµ

where

µ : M → R

is S1-invariant.

µ is the moment map

Now M//εS1 = µ−1(ε)/S1 is a symplectic

manifold of dimension dimM − 2.
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Example. Flat C with standard action of S1

z 7→ eiθz.

Moment map is

φ : z 7→ |z|2

Symplectic reduction

M//εS1 = µ−1(ε)/S1

(where ε > 0) gives CPn−1.

For action of general G, µ takes values in Lie(G)∗

and is G-equivariant. Take ε in centre; dim of

symplectic quotient M//εG is dimM −2 dimG.
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HYPERKAHLER QUOTIENTS

Action of G on M hyperkähler. Moment map

µ = (µ1, µ2, µ3) : M → Lie(G)∗ ⊗ R3

Hyperkähler quotient is

M///εG = µ−1(ε1, ε2, ε3)/G

of dimension dimM − 4 dimG

Example. Flat H with standard action of S1

(z, w) 7→ (eiθz, e−iθw)

Moment map is

φ : (z, w) 7→ (
1

2
(|z|2 − |w|2),Re zw, Im zw).

Singular ε-locus typically codim 3 in target; no

wall-crossing.
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Other examples use:

infinite-dimensional spaces (connexions, Higgs

fields), and

infinite dimensional groups (gauge groups).

Moment maps are (reductions of ) Self-Dual

Yang-Mills equations.

Can give finite-dimensional moduli spaces with

hyperkahler structure

e.g. moduli spaces for

instantons, monopoles, Nahm equations, Higgs

pairs
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Examples include

T ∗GC

complex coadjoint orbits

(cf. symplectic case)
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Implosion

Implosion of M is “abelianisation”

In symplectic case this means

M//λG = Mimpl//λT

(T max torus in G)

Universal example: M = T ∗G so want

Mimpl//λT = Oλ coadjoint orbit

Example. G = SU(2), Oλ = S2 or ∗, so

Mimpl = C2.
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In general: take G × t̄∗+ and collapse by com-

mutator of stabiliser of t ∈ t̄∗+.

eg for SU(2) take SU(2)× [0,∞) and collapse

by SU(2) at origin, to obtain C2.

For higher rank groups we obtain a stratified

space, not smooth in general.

Top stratum is G × t∗+, where no collapsing

occurs as stabiliser is just T .
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Algebro-geometric description

GC//N : N maximal unipotent

eg for SU(2) we have SL(2,C)//N

(
x11 x12
x21 x22

)
7→
(
x11 x12 + nx11
x21 x22 + nx21

)

Invariants x11, x21, so SL(2,C)//N = C2.

Strata are GC/[P, P ] where P are parabolics

So top stratum is GC/N = GA = G × t∗+ via

Iwasawa decomposition
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Hyperkahler version?

M = T ∗GC. Want

Mimpl///λT ∼ complex coadjoint orbit

Consider complex-symplectic quotient by N , in

GIT sense ; this is

(GC × b)//N

Exists in general by results of Ginzburg-Riche
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For SU(n), we can describe via quiver varieties,

as hyperkahler quotient

Affine completion of ’top stratum’ GC ×N b

In general torus reductions will give :

Kostant varieties (level sets of the collection

of invariant polynomials)

eg regular semisimple orbits

in general, closure of a regular orbit. Union of

orbits. Semisimple orbit is lowest stratum

eg nilpotent variety is reduction at level zero.
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Complex coadjoint orbits may also be described

as moduli spaces of solutions to Nahm’s equa-

tions on the half-line (Kronheimer, Biquard,

Kovalev)

This gives an alternative approach to implosion

using Nahm data
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