GRADIENT AND DIVERGENCE ON SYMPLECTIC MANIFOLDS

Agnieszka Najberg University of Lodz

Bedlewo, 18-24.10.2015r.

Agnieszka Najberg GRADIENT AND DIVERGENCE ON SYMPLECTIC MANIFOLD

Let (M, ω) be a symplectic manifold of dimension 2n and let x be a point of this manifold. Denote by $T_x M$ and $T_x^* M$ the tangent space and the cotangent space at x, respectively.

The symplectic form can be transmited to the bilinear form acting on covectors, in the following way

$$\omega(\eta,\xi) = \omega(\eta^{\sharp},\xi^{\sharp}),$$

where $\eta, \xi \in T_x^*M$ and for any one form η, η^{\sharp} is defined by

$$\eta(\mathbf{v}) = \omega(\eta^{\sharp}, \mathbf{v}), \ \mathbf{v} \in T_{\mathbf{x}} \mathbf{M}.$$

This form induces bilinear pairings on each $\Lambda^p T_x^* M$, p = 1, ..., 2n, also denoted by ω and defined by

$$\omega(\eta_1 \wedge \cdots \wedge \eta_p, \xi_{\wedge} \cdots \wedge \xi_p) = det(\omega(\eta_i, \xi_j)_{i,j=1,\dots,p}),$$

where $\eta_i, \xi_j \in T_x^* M$ for any $i, j = 1, \dots, p$.

Consider two spaces:

 $\Lambda^{p} = C^{\infty}(\Lambda^{p}T^{*}M)$ - the space of scalar-valued p-forms,

 $\vec{\Lambda}^{p} = C^{\infty}(\Lambda^{p}T^{*}M \otimes TM)$ - the space of vector-valued p-forms.

Now, the symplectic form can be extended to the space of vectorvalued forms by the formula

$$\omega(\varphi \otimes X, \psi \otimes Y) = \omega(\varphi, \psi)\omega(X, Y),$$

for any $\varphi \otimes X, \psi \otimes Y \in \vec{\Lambda}^p$. Additionally,

(i) ω(φ ⊗ X, Y) = ω(X, Y) · φ, for any φ ⊗ X ∈ Λ^p and Y ∈ Γ(TM),
(ii) ω(η ⊗ φ, ξ ⊗ ψ) = ω(η, ξ) · ω(φ, ψ), for any η ⊗ φ, ξ ⊗ ψ ∈ C[∞](T*M ⊗ Λ^pT*M).

Define three exterior products (all denoted by the same symbol):

$$\begin{split} &\wedge : \Lambda^{p} \times \Lambda^{q} \to \Lambda^{p+q} & \varphi \wedge \psi; \\ &\wedge : \Lambda^{p} \times \vec{\Lambda}^{q} \to \vec{\Lambda}^{p+q} & \varphi \wedge (\psi \otimes X) = (\varphi \wedge \psi) \otimes X; \\ &\wedge : \vec{\Lambda}^{p} \times \vec{\Lambda}^{q} \to \Lambda^{p+q} & (\varphi \otimes X) \wedge (\psi \otimes Y) = (\varphi \wedge \psi) \cdot \omega(X, Y). \end{split}$$

Definition 1

A symplectic covariant derivative on (M, ω) is a smooth linear covariant derivative ∇ such that:

$$T^{\nabla} = \mathbf{0}, \ \nabla \omega = \mathbf{0}.$$

Take ∇ any symplectic covariant derivative. This operator can be extended to the tensor algebra and the next to the space of vector-valued p-forms for any vector field Y according to the formula

$$\nabla_{\mathbf{Y}}:\vec{\Lambda}^{\boldsymbol{\rho}}\ni\varphi\otimes \boldsymbol{X}\longmapsto\nabla_{\mathbf{Y}}\varphi\otimes \boldsymbol{X}+\varphi\otimes\nabla_{\mathbf{Y}}\boldsymbol{X}\in\vec{\Lambda}^{\boldsymbol{\rho}}.$$

Let $d : \Lambda^p \to \Lambda^{p+1}$ be the operator of exterior derivation. It can be extended to the space of vector-valued forms according to the formula

$$d:ec{\Lambda}^{
ho}
i arphi \otimes X\longmapsto darphi \otimes X+(-1)^{
ho}arphi\wedge
abla X\in ec{\Lambda}^{
ho+1}$$

Proposition 1

For any φ ∈ Λ^p and ψ ∈ Λ^q, d(φ ∧ ψ) = dφ ∧ ψ + (-1)^pφ ∧ dψ.
 For any φ ∈ Λ^p and Ψ ∈ Λ^q, d(φ ∧ Ψ) = dφ ∧ Ψ + (-1)^pφ ∧ dΨ.

(3) For any
$$\Phi \in \vec{\Lambda}^{p}$$
 and $\Psi \in \vec{\Lambda}^{q}$, $d(\Phi \wedge \Psi) = d\Phi \wedge \Psi + (-1)^{p} \Phi \wedge d\Psi$.

Differential operators on symplectic manifolds

Let e_1, \ldots, e_{2n} be a local symplectic base on M and let e^1, \ldots, e^{2n} be a dual base to e_1, \ldots, e_{2n} . Note, that M is oriented, so

$$\Omega = \frac{1}{n!}\omega^n = (-1)^{\frac{n(n-1)}{2}} e^1 \wedge e^2 \wedge \cdots \wedge e^{2n}.$$

Definition 2

The linear operator $* : \Lambda^p \to \Lambda^{2n-p}$ defined by

$$\varphi \wedge *\psi = \omega(\varphi, \psi)\Omega, \quad \text{ for all } \varphi, \psi \in \Lambda^p$$

is called the symplectic Hodge star operator.

The symplectic Hodge star operator can be extended to the space of vector-valued forms according to the formula

$$*: \vec{\Lambda}^{p} \ni \varphi \otimes X \longmapsto (*\varphi) \otimes X \in \vec{\Lambda}^{2n-p}.$$

Definition 3

The linear operator $tr : \Lambda^p \to \Lambda^{p-2}$ defined by

$$tr arphi = \sum_{k=1}^n \imath_{e_{n+k}} \imath_{e_k} arphi$$
 for all $arphi \in \Lambda^p$

is called the symplectic trace operator, where e_1, \ldots, e_{2n} is the local symplectic base on M.

Moreover, we also define the symplectic trace operator acting on the space of vector-valued forms:

$$Tr: \vec{\Lambda}^{p} \ni \varphi \otimes X \longmapsto \imath_{X} \varphi \in \Lambda^{p-1}.$$

Definition 4

Define the linear operator $j : \Lambda^p \to \vec{\Lambda}^{p-1}$ by the formula

$$\omega(j\varphi, X) = \imath_X \varphi,$$

for any $\varphi \in \Lambda^{p}$, $X \in \Gamma(TM)$.

Proposition 2

Let $e_1, ..., e_{2n}$ be a local symplectic base of M on a neighborhood U. For any $\varphi \in \Lambda^p$, we have

$$j\varphi = \sum_{k=1}^{n} \imath_{e_{n+k}} \varphi \otimes e_k - \imath_{e_k} \varphi \otimes e_{n+k}$$
 in U.

Proposition 3

For any
$$\varphi \in \Lambda^p$$
 and $\psi \in \Lambda^q$, $j(\varphi \wedge \psi) = j\varphi \wedge \psi + (-1)^p \varphi \wedge j\psi$

Definition 5

Define the linear operator $\alpha : \vec{\Lambda}^p \to \Lambda^{p+1}$ by the formula

$$\alpha(\varphi\otimes X)=X^{\flat}\wedge\varphi,$$

for any $\varphi \otimes X \in \vec{\Lambda}^p$, where one form X^{\flat} is defined by

 $X^{\flat}(Y) = \omega(X, Y)$, for any vector field Y.

Proposition 4

For any
$$\varphi \in \Lambda^p$$
 and $\Psi \in \overline{\Lambda^p}$, we have $\omega(j\varphi, \Psi) = \omega(\varphi, \alpha \Psi)$.

Moreover, we have

Proposition 5

For any $\varphi \in \Lambda^p$, $\alpha j \varphi = p \varphi$.

The definitions of symplectic trace operators imply the following

Proposition 6 For any $\varphi \in \Lambda^p$, $Trj\varphi = -2tr\varphi$.

Moreover, the symplectic trace operator acting on vector exterior forms satisfies

Proposition 7

For any $\Phi \in \vec{\Lambda}^p$,

$$Tr\Phi = (-1)^p * \alpha * \Phi.$$

Now, two first order linear operators grad and div will be introduced. The first one acts on scalar exterior forms.

Definition 6

The differential operator grad : $\Lambda^p \to \vec{\Lambda}^p$ defined by

grad = jd + dj

is called the gradient.

Remark 1

For any $f \in \Lambda^0$ and $X \in \vec{\Lambda}^0$, $\omega(gradf, X) = X(f)$.

Definition 7

The differential operator div : $\vec{\Lambda}^{p} \rightarrow \Lambda^{p}$ defined by

div = Trd + dTr

is called the divergence.

Proposition 8

For any $\Phi \in \vec{\Lambda}^p$, we have

$$div(\Phi) = Tr \nabla(\Phi).$$

In particular, $div(X) = Tr(\nabla X)$.

Proposition 9

For any $\varphi \otimes X \in \vec{\Lambda}^p$, we have $div(\varphi \otimes X) = \nabla_X \varphi + \varphi \cdot div(X)$.

Theorem 1

(1) For any $\varphi \in \Lambda^p$ and $\psi \in \Lambda^q$, $grad(\varphi \wedge \psi) = grad\varphi \wedge \psi + \varphi \wedge grad\psi.$ (2) For any $\varphi \in \Lambda^p$ and $\Psi \in \Lambda^{\vec{q}}$, $div(\varphi \wedge \Psi) = arad\varphi \wedge \Psi + \varphi \wedge div\Psi.$ (3) For any $\varphi \in \Lambda^p$ and $\Psi \in \Lambda^{\vec{q}}$, $Tr(\varphi \wedge \Psi) = j\varphi \wedge \Psi + (-1)^p \varphi \wedge Tr\Psi.$

Theorem 2

Let $e_1, ..., e_{2n}$ be a local symplectic base of M on a neighborhood U. Let $e^1, ..., e^{2n}$ be its dual base. For any $\varphi \in \Lambda^p$, we have

grad
$$\varphi = \sum_{k=1}^{n} \nabla_{e_{n+k}} \varphi \otimes e_k - \nabla_{e_k} \varphi \otimes e_{n+k}$$
 in U.

Proposition 10

For any vector field X and for any $\varphi \in \Lambda^p$, we have

$$grad \varphi \wedge X = \nabla_X \varphi.$$

Proposition 11

- (1) For any $f \in \Lambda^0$, grad df = d gradf.
- (2) For any $\varphi \in \Lambda^p$, grad $d\varphi = d \operatorname{grad} \varphi + d^2 j \varphi$.

It holds the following relations:

Theorem 3

For any vector field X,

(1)
$$j\nabla_X = \nabla_X j$$
.

$$(2) * \nabla_X = \nabla_X * .$$

Theorem 4

Formally adjoint operators

For any $\theta \in \Lambda^{p}$ and $\vartheta \in \Lambda^{p}$, we define the global product θ and ϑ by

$$(heta,artheta) = \int_M heta \wedge *artheta,$$

or equivalently

$$(heta,artheta) = \int_{M} \omega(heta,artheta)\cdot\Omega,$$

if the integral on the right-hand side exists. It is defined by analogy for vector exterior forms.

Definition 8

The operator L is called formally adjoint to $L^{\dagger},$ if the following condition is satisfied

$$(L\theta,\vartheta)=(\theta,L^{\dagger}\vartheta),$$

if only θ or ϑ has the compact support.

Definition 9

Define the differential operator $\delta : \Lambda^p \to \Lambda^{p-1}$ by

$$\delta \varphi = (-1)^p (*d*) \varphi$$
, for all $\varphi \in \Lambda^p$.

Between, the operators grad, α and classical operators *, d and δ , there hold the following relations:

Proposition 12

(1) $d = \alpha$ grad.

(2) $\delta = Tr \ grad$.

Formally adjoint operators

It turns out, that the following operators are formally adjoint:

Theorem 5

 δ is formally adjoint to d, i.e.

$$(\mathbf{d}\varphi,\psi)=(\varphi,\delta\psi),$$

for any $\varphi \in \Lambda^{p-1}$ and $\psi \in \Lambda^p$, if only φ or ψ has a compact support.

Theorem 6

-div is formally adjoint to grad, i.e.

$$(grad\varphi, \Psi) = (\varphi, -div\Psi),$$

for any $\varphi \in \Lambda^p$ and $\Psi \in \vec{\Lambda}^p$, if only φ or Ψ has a compact support.

Definition 10

Define the differential operator $\nabla^* : C^{\infty}(T^*M \otimes \Lambda^{p}T^*M) \to \Lambda^{p}$ by

$$(\diamondsuit) \nabla^*(\Xi) = \sum_{k=1}^n \nabla_{e_{n+k}} \imath_{e_k} \Xi - \nabla_{e_k} \imath_{e_{n+k}} \Xi - div(e_k) \cdot \imath_{e_{n+k}} \Xi + div(e_{n+k}) \cdot \imath_{e_k} \Xi$$

for any $\Xi \in C^{\infty}(T^*M \otimes \Lambda^p T^*M)$ and for any local symplectic base $e_1, ..., e_{2n}$ on M.

Formally adjoint operators

Proposition 13

For any $\xi \otimes \varphi \in C^{\infty}(T^*M \otimes \Lambda^p T^*M)$,

$$abla^*(\xi\otimesarphi)=-
abla_{\xi^\sharp}arphi-arphi\cdot\operatorname{\textit{div}}\xi^\sharp.$$

Proposition 14

For any covariant derivative on M such, that $\nabla \omega = 0$ (not necessarily T = 0) and for any compactly supported vector field X on M

$$\int_{M} (divX + \omega(X, \tau))\Omega = 0,$$

where for any local symplectic base e₁, ..., e_{2n} on M,

$$\tau = \sum_{k=1}^{n} T(e_k, e_{n+k}).$$

With respect to the global products,

Theorem 7

 ∇^* is formally adjoint to ∇ i.e.

$$(\nabla \varphi, \Xi) = (\varphi, \nabla^* \Xi),$$

for any $\varphi \in \Lambda^p$ and $\Xi \in C^{\infty}(T^*M \otimes \Lambda^p T^*M)$, if only φ or Ξ has a compact support.

Literature:

- J.-L. Brylinski, *A differential complex for Poisson manifolds*, J. Differential Geom. 28, no. 1, 93-114, MR 89m: 58006, 1988.
- K. Habermann, L. Habermann, *Introduction to Symplectic Dirac Operators*, Springer, ISSN print edition: 0075-8434, November 2004.
- A. Klekot and A. Pierzchalski, Weitzenböck formula for vector-valued forms, preprint of Faculty of Mathematics and Computer Science, University of Lodz, 2011.
- P. Libermann and C.Marle, *Symplectic Geometry and Analytical Mechanics*, D. Reidel Publishing Company, 1986.
- H.Rummler, Differential forms, Weitzenböck formulea and foliations, Publicacions Matematiques 33, 543-554 p., 1989.

- Y. Yu, *Index theorem and heat equation method*, World Scientific Publishing Co, ISBN 9810246102, 2001.
- A. Weistein, Lectures on symplectic manifolds, CBMS regional conference series in Mathematics 39, American Mathematical Society, Providence, 1977.