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Introduction

Let (M, ω) be a symplectic manifold of dimension 2n and let x be a
point of this manifold. Denote by TxM and T ∗x M the tangent space
and the cotangent space at x, respectively.
The symplectic form can be transmited to the bilinear form acting on
covectors, in the following way

ω(η, ξ) = ω(η], ξ]),

where η, ξ ∈ T ∗x M and for any one form η, η] is defined by

η(v) = ω(η], v), v ∈ TxM.

This form induces bilinear pairings on each ΛpT ∗x M, p = 1, . . .2n, also
denoted by ω and defined by

ω(η1 ∧ · · · ∧ ηp, ξ∧ · · · ∧ ξp) = det(ω(ηi , ξj )i,j=1,...,p),

where ηi , ξj ∈ T ∗x M for any i , j = 1, . . . ,p.
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Introduction
Consider two spaces:

Λp = C∞(ΛpT ∗M) - the space of scalar-valued p-forms,
~Λp = C∞(ΛpT ∗M ⊗ TM) - the space of vector-valued p-forms.

Now, the symplectic form can be extended to the space of vector-
valued forms by the formula

ω(ϕ⊗ X , ψ ⊗ Y ) = ω(ϕ,ψ)ω(X ,Y ),

for any ϕ⊗ X , ψ ⊗ Y ∈ ~Λp. Additionally,

(i) ω(ϕ⊗ X ,Y ) = ω(X ,Y ) · ϕ, for any ϕ⊗ X ∈ ~Λp and Y ∈ Γ(TM),

(ii) ω(η ⊗ ϕ, ξ ⊗ ψ) = ω(η, ξ) · ω(ϕ,ψ), for any η ⊗ ϕ, ξ ⊗ ψ ∈
C∞(T ∗M ⊗ ΛpT ∗M).

Define three exterior products (all denoted by the same symbol):

∧ : Λp × Λq → Λp+q ϕ ∧ ψ;

∧ : Λp × ~Λq → ~Λp+q ϕ ∧ (ψ ⊗ X ) = (ϕ ∧ ψ)⊗ X ;

∧ : ~Λp × ~Λq → Λp+q (ϕ⊗ X ) ∧ (ψ ⊗ Y ) = (ϕ ∧ ψ) · ω(X ,Y ).
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Differential operators on symplectic manifolds

Definition 1
A symplectic covariant derivative on (M, ω) is a smooth linear
covariant derivative ∇ such that:

T∇ = 0, ∇ω = 0.

Take ∇ any symplectic covariant derivative. This operator can be
extended to the tensor algebra and the next to the space of
vector-valued p-forms for any vector field Y according to the formula

∇Y : ~Λp 3 ϕ⊗ X 7−→ ∇Yϕ⊗ X + ϕ⊗∇Y X ∈ ~Λp.
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Differential operators on symplectic manifolds

Let d : Λp → Λp+1 be the operator of exterior derivation. It can be
extended to the space of vector-valued forms according to the formula

d : ~Λp 3 ϕ⊗ X 7−→ dϕ⊗ X + (−1)pϕ ∧∇X ∈ ~Λp+1.

Proposition 1

(1) For any ϕ ∈ Λp and ψ ∈ Λq , d(ϕ ∧ ψ) = dϕ ∧ ψ + (−1)pϕ ∧ dψ.

(2) For any ϕ ∈ Λp and Ψ ∈ ~Λq , d(ϕ ∧Ψ) = dϕ ∧Ψ + (−1)pϕ ∧ dΨ.

(3) For any Φ ∈ ~Λp and Ψ ∈ ~Λq , d(Φ ∧Ψ) = dΦ ∧Ψ + (−1)pΦ ∧ dΨ.
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Differential operators on symplectic manifolds

Let e1, . . . ,e2n be a local symplectic base on M and let e1, . . . ,e2n be
a dual base to e1, . . . ,e2n. Note, that M is oriented, so

Ω =
1
n!
ωn = (−1)

n(n−1)
2 e1 ∧ e2 ∧ · · · ∧ e2n.

Definition 2

The linear operator ∗ : Λp → Λ2n−p defined by

ϕ ∧ ∗ψ = ω(ϕ,ψ)Ω, for all ϕ,ψ ∈ Λp

is called the symplectic Hodge star operator.

The symplectic Hodge star operator can be extended to the space of
vector-valued forms according to the formula

∗ : ~Λp 3 ϕ⊗ X 7−→ (∗ϕ)⊗ X ∈ ~Λ2n−p.
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Differential operators on symplectic manifolds

Definition 3

The linear operator tr : Λp → Λp−2 defined by

trϕ =
n∑

k=1

ıen+k ıekϕ for all ϕ ∈ Λp

is called the symplectic trace operator, where e1, . . . ,e2n is the local
symplectic base on M.

Moreover, we also define the symplectic trace operator acting on the
space of vector-valued forms:

Tr : ~Λp 3 ϕ⊗ X 7−→ ıXϕ ∈ Λp−1.
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Gradient and divergence in the Rummler sense

Definition 4

Define the linear operator j : Λp → ~Λp−1 by the formula

ω(jϕ,X ) = ıXϕ,

for any ϕ ∈ Λp,X ∈ Γ(TM).

Proposition 2

Let e1, ...,e2n be a local symplectic base of M on a neighborhood U.
For any ϕ ∈ Λp, we have

jϕ =
n∑

k=1

ıen+kϕ⊗ ek − ıekϕ⊗ en+k in U.

Proposition 3

For any ϕ ∈ Λp and ψ ∈ Λq , j(ϕ ∧ ψ) = jϕ ∧ ψ + (−1)pϕ ∧ jψ.
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Gradient and divergence in the Rummler sense

Definition 5

Define the linear operator α : ~Λp → Λp+1 by the formula

α(ϕ⊗ X ) = X [ ∧ ϕ,

for any ϕ⊗ X ∈ ~Λp, where one form X [is defined by

X [(Y ) = ω(X ,Y ), for any vector field Y .

Proposition 4

For any ϕ ∈ Λp and Ψ ∈ ~Λp, we have ω(jϕ,Ψ) = ω(ϕ, αΨ).

Moreover, we have

Proposition 5

For any ϕ ∈ Λp, αjϕ = pϕ.
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Gradient and divergence in the Rummler sense

The definitions of symplectic trace operators imply the following

Proposition 6

For any ϕ ∈ Λp,
Trjϕ = −2trϕ.

Moreover, the symplectic trace operator acting on vector exterior
forms satisfies

Proposition 7

For any Φ ∈ ~Λp,
TrΦ = (−1)p ∗ α ∗ Φ.
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Gradient and divergence in the Rummler sense

Now, two first order linear operators grad and div will be introduced.
The first one acts on scalar exterior forms.

Definition 6

The differential operator grad : Λp → ~Λp defined by

grad = jd + dj

is called the gradient.

Remark 1

For any f ∈ Λ0 and X ∈ ~Λ0, ω(gradf ,X ) = X (f ).
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Gradient and divergence in the Rummler sense

Definition 7

The differential operator div : ~Λp → Λp defined by

div = Trd + dTr

is called the divergence.

Proposition 8

For any Φ ∈ ~Λp, we have

div(Φ) = Tr ∇(Φ).

In particular, div(X ) = Tr(∇X ).

Proposition 9

For any ϕ⊗ X ∈ ~Λp, we have div(ϕ⊗ X ) = ∇Xϕ+ ϕ · div(X ).
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Gradient and divergence in the Rummler sense

Theorem 1

(1) For any ϕ ∈ Λp and ψ ∈ Λq ,

grad(ϕ ∧ ψ) = gradϕ ∧ ψ + ϕ ∧ gradψ.

(2) For any ϕ ∈ Λp and Ψ ∈ ~Λq ,

div(ϕ ∧Ψ) = gradϕ ∧Ψ + ϕ ∧ divΨ.

(3) For any ϕ ∈ Λp and Ψ ∈ ~Λq ,

Tr(ϕ ∧Ψ) = jϕ ∧Ψ + (−1)pϕ ∧ TrΨ.
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Gradient and divergence in the Rummler sense

Theorem 2

Let e1, ...,e2n be a local symplectic base of M on a neighborhood U.
Let e1, ...,e2n be its dual base. For any ϕ ∈ Λp, we have

grad ϕ =
n∑

k=1

∇en+kϕ⊗ ek −∇ekϕ⊗ en+k in U.

Proposition 10

For any vector field X and for any ϕ ∈ Λp, we have

gradϕ ∧ X = ∇Xϕ.

Proposition 11

(1) For any f ∈ Λ0, grad df = d gradf .

(2) For any ϕ ∈ Λp, grad dϕ = d gradϕ+ d2jϕ.
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Gradient and divergence in the Rummler sense

It holds the following relations:

Theorem 3

For any vector field X,

(1) j∇X = ∇X j .

(2) ∗∇X = ∇X ∗ .

Theorem 4

(1) ∗ grad = grad ∗;

(2) ∗ div = div ∗ .
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Formally adjoint operators

For any θ ∈ Λp and ϑ ∈ Λp, we define the global product θ and ϑ by

(θ, ϑ) =

∫
M
θ ∧ ∗ϑ,

or equivalently

(θ, ϑ) =

∫
M
ω(θ, ϑ) · Ω,

if the integral on the right-hand side exists.
It is defined by analogy for vector exterior forms.

Definition 8

The operator L is called formally adjoint to L†, if the following
condition is satisfied

(Lθ, ϑ) = (θ,L†ϑ),

if only θ or ϑ has the compact support.
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Formally adjoint operators

Definition 9

Define the differential operator δ : Λp → Λp−1 by

δϕ = (−1)p(∗d∗)ϕ, for all ϕ ∈ Λp.

Between, the operators grad, α and classical operators *, d and δ,
there hold the following relations:

Proposition 12

(1) d = α grad .

(2) δ = Tr grad .
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Formally adjoint operators

It turns out, that the following operators are formally adjoint:

Theorem 5
δ is formally adjoint to d, i.e.

(dϕ,ψ) = (ϕ, δψ),

for any ϕ ∈ Λp−1 and ψ ∈ Λp, if only ϕ or ψ has a compact support.

Theorem 6
-div is formally adjoint to grad, i.e.

(gradϕ,Ψ) = (ϕ,−divΨ),

for any ϕ ∈ Λp and Ψ ∈ ~Λp, if only ϕ or Ψ has a compact support.
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Formally adjoint operators

Definition 10

Define the differential operator ∇∗ : C∞(T ∗M ⊗ ΛpT ∗M)→ Λp by

(♦) ∇∗(Ξ) =
n∑

k=1

∇en+k ıek Ξ−∇ek ıen+k Ξ

− div(ek ) · ıen+k Ξ + div(en+k ) · ıek Ξ,

for any Ξ ∈ C∞(T ∗M ⊗ ΛpT ∗M) and for any local symplectic base
e1, ...,e2n on M.
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Formally adjoint operators

Proposition 13

For any ξ ⊗ ϕ ∈ C∞(T ∗M ⊗ ΛpT ∗M),

∇∗(ξ ⊗ ϕ) = −∇ξ]ϕ− ϕ · divξ].

Proposition 14

For any covariant derivative on M such, that ∇ω = 0 (not necessarily
T = 0) and for any compactly supported vector field X on M∫

M
(divX + ω(X , τ))Ω = 0,

where for any local symplectic base e1, ...,e2n on M,

τ =
n∑

k=1

T (ek ,en+k ).
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Formally adjoint operators

With respect to the global products,

Theorem 7
∇∗ is formally adjoint to ∇ i.e.

(∇ϕ,Ξ) = (ϕ,∇∗Ξ),

for any ϕ ∈ Λp and Ξ ∈ C∞(T ∗M ⊗ ΛpT ∗M), if only ϕ or Ξ has a
compact support.
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