Rutkowski Andrzej

Undefined
Tytuł naukowy: 
prof.
Stopień naukowy: 
dr hab.
Jednostka: 
Katedra Fizyki i Metod Komputerowych
Stanowisko: 
profesor zwyczajny
E-mail: 
Telefon: 
524 60 37
Pokój: 
D 2/5
Konsultacje: 

11.15 -12.45 środa

Dziedzina: 
Nauki fizyczne
Dyscyplina: 
Fizyka
Specjalność: 
Fizyka teoretyczna atomu i cząsteczki
Dorobek naukowy: 

1. K. Jankowski and A. Rutkowski An investigation of reliability of the Galerkin-Petrov Method with a special study of helium atom ground state. Theor. Chim. Acta 43, 145-159 (1976) 2. K. Jankowski, J. Muszyńska and A. Rutkowski An investigation of the reliability of the Galerkin- Petrov Method. II. Ground state of the Beryllium Atom Theor. Chim. Acta 47, 275-282 (1978) 3. K. Jankowski, D. Rutkowska and A. Rutkowski An investigation of the reliability of the Galerkin-Petrov Method. III. Excited states and nonlinear parameters Theor. Chim. Acta 48, 119-125 (1978) 4. K. Jankowski, D. Rutkowska and A. Rutkowski Accurate third-order correlation energies for closed-shell systems: I. Ten-electron systems J. Phys. B. At. Mol. Phys. 15, 1137-1159 (1982) 5. K. Jankowski, D. Rutkowska and A. Rutkowski Accurate third-order correlation energies for closed-shell systems: II. Two-and four-electron systems J. Phys. B. At. Mol. Phys. 15, 4063-4077 (1982) 6. K. Jankowski, D. Rutkowska and A. Rutkowski Application of symmetry-adapted pair functions in atomic structure calculations. II. Third-order correlation energy of the neon atom Phys. Rev. A 26, 2378-2394 (1982) 7. D. Rutkowska, A. Rutkowski and K. Jankowski Accuracy of first-order wavefunctions for ten- electron atomic systems Chem. Phys. Letters 105, 370-373 (1984) 8. A.Rutkowski Relativistic perturbation theory: I. A new perturbation approach to the Dirac equation J. Phys. B: At. Mol. Phys. 19, 149-158 (1986) 9. A. Rutkowski Relativistic perturbation theory: II. One-electron variational perturbation calculations J. Phys. B: At. Mol. Phys. 19, 3431-3441 (1986) 10. A. Rutkowski Relativistic perturbation theory: III. A new perturbation approach to the two-electron Dirac-Coulomb equation J. Phys. B: At. Mol. Phys.19, 3443-3455 (1986) 11. A. Rutkowski and D. Rutkowska Relativistic perturbation theory. Third order variational perturbation calculations for Physica Scripta 36, 397-399 (1987) 12. K. Jankowski and A. Rutkowski Correlation and relativistic effects for many-electron systems Physica Scripta 36, 464-467 (1987) 13. A. Rutkowski, K. Jankowski and B. Mikielewicz An alternative to the quasirelativistic approach J. Phys. B: At. Mol. Phys. 21, L147-L150 (1988) 14. K. Jankowski, A. Rutkowski Structure of the correlation energy in systems J. Chem. Phys. 88, 7617-7622 (1988) 15. A. Rutkowski On the variational perturbation approach to the Dirac equation Physica Scripta 38, 816-820 (1988) 16. K. Jankowski and A. Rutkowski Correlation and relativistic effects for many-electron systems: II. Second-order energies for closed-shell atoms J. Phys. B: At. Mol. Phys. 22, 2669-2678 (1989) 17. A. Rutkowski Metoda zaburzeń dla równań Diraca i Diraca-Coulomba oraz jej zastosowania Wydawnictwa Wyższej Szkoły Pedagogicznej w Olsztynie, Olsztyn, 1989 18. A. Rutkowski and W. H. E. Schwarz Relativistic perturbation theory of chemical properties Theor. Chim. Acta 76, 391-410 (1990) 19. J. Iwański, D. Rutkowska and A. Rutkowski On the calculations of the variational correlation energy using Møller-Plesset first-order wavefunctions Chem. Phys. Letters 170, 531-537 (1990) 20. W. H. E. Schwarz, A. Rutkowski and G. Collignon Nonsingular relativistic perturbation theory and relativistic changes of molecular structure in The Effects of relativity in atoms, molecules and the solid-state ed. S. Wilson, Plenum, NY (1991), 135-147 21. A. Rutkowski, D. Rutkowska and W. H. E. Schwarz Relativistic perturbation theory of molecular structure Theor. Chim. Acta, 84,105-114 (1992) 22. A. Rutkowski, W. H. E. Schwarz, and R. Kozłowski Relativistic virial theorem for diatomic molecules. Application to Theor. Chim. Acta, 87, 75-87 (1993) 23. W. H. E. Schwarz, A. Rutkowski and S. G. Wang Understanding relativistic effects of chemical bonding Int. J. Quantum Chem. 57, 641-653 (1996) 24. A. Rutkowski Regular perturbation theory of relativistic corrections Phys. Rev. A 53, 145-151 (1996) 25. A. Rutkowski, W. H. E. Schwarz Effective Hamiltonian for near-degenerate states in direct relativistic perturbation theory. I. Formalism. J. Chem. Phys. 104, 8546-8552 (1996) 26. A. Rutkowski and R. Kozłowski Double perturbation approach to the relativistic hydrogenic atom in a static and uniform magnetic field J. Phys. B: At. Mol. Phys. 30, 1437-1448 (1997) 27. A. Rutkowski, W. H. E. Schwarz, R. Kozłowski, J. Bęczek, R. Franke Effective Hamiltonian for near-degenerate states in direct relativistic perturbation theory. II. -like systems J. Chem. Phys. 109, 2135-2143 (1998) 28. A. Rutkowski Iterative solution of the one-electron Dirac equation based on the Bloch equation of the direct perturbation theory Chem. Phys. Lett. 307, 259-264 (1999) 29. A. Rutkowski, R. Kozłowski and D. Rutkowska Regular perturbation theory of relativistic corrections: II. Algebraic approximation. Phys. Rev. A 63, 012508 (2000) 30. A. Poszwa and A. Rutkowski Highly accurate calculation for hydrogenic atoms in a magnetic field of arbitrary strength Phys. Rev. A 63, 043418 (2001) 31. A. Rutkowski and A. Poszwa Hydrogen atom in a strong magnetic field Phys. Rev. A 67, 013412 (2003) 32. A. Poszwa and A. Rutkowski Hydrogen atom in a strong magnetic field. II. Relativistic corrections for low-lying excited states Phys. Rev. A 69, 023403 (2004) 33. O. Kullie, D. Kolb, A. Rutkowski Two-spinor fully relativistic finite element (FEM) solution of the two- Center Coulomb problem Chem. Phys. Lett. 383, 215-221(2004) 34. A. Rutkowski and A. Poszwa Analytical Solution for Relativistic Hydrogenic Atom in Static and Uniform Magnetic Physica Scripta 71, 1-5(2005) 35. A. Poszwa and A. Rutkowski Static dipole magnetic susceptibilities of relativistic hydrogen atoms: A semianalytical approach Phys. Rev. A 75, 033402 (2007)

Realizowane tematy badawcze: 

Techniki komputerowe w badaniu własności atomów i cząsteczek. Metody obliczeniowe w nauce i technice.