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1. Homogeneous Φ-spaces and canonical structures
Researchers who founded this theory: V.I.Vedernikov, N.A.Stepanov,

A.Ledger, A.Gray, J.A.Wolf, A.S.Fedenko, O.Kowalski, L.V.Sabinin, V.Kac
. . .

Definition 1. Let G be a connected Lie group, Φ its (analytic) au-
tomorphism, GΦ the subgroup of all fixed points of Φ, and GΦ

o the
identity component of GΦ. Suppose a closed subgroup H of G satisfies
the condition

GΦ
o ⊂ H ⊂ GΦ.

Then G/H is called a homogeneous Φ-space.
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Homogeneous Φ-spaces include homogeneous symmetric spaces (Φ2 = id)
and, more general, homogeneous k-symmetric spaces (Φk = id).
For any homogeneous Φ-space G/H one can define the mapping

So = D : G/H → G/H, xH → Φ(x)H.
It is evident that in view of homogeneity the ”symmetry” Sp can be defined

at any point p ∈ G/H .

We dwell on homogeneous k-symmetric spaces G/H only.
Let g and h be the corresponding Lie algebras for G and H , ϕ = dΦe

the automorphism of g, where ϕk = id. Consider the linear operator
A = ϕ − id. It is known (N.A.Stepanov) that G/H is a reductive space
for which the corresponding canonical reductive decomposition is of the
form:

g = h⊕m, m = Ag.
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Besides, this decomposition is obviously ϕ–invariant. Denote by θ the
restriction of ϕ to m. As usual, we identify m with the tangent space
To(G/H) at the point o = H .

Definition 2 (VVB, N.A.Stepanov, 1991). An invariant affinor struc-
ture F (i.e. a tensor field of type (1, 1)) on a homogeneous k-symmetric
space G/H is called canonical if its value at the point o = H is a poly-
nomial in θ.

Denote by A(θ) the set of all canonical affinor structures on G/H . It is
easy to see that A(θ) is a commutative subalgebra of the algebra A of all
invariant affinor structures on G/H .
Important property: All canonical structures are, in addition, invariant

with respect to the ”symmetries” {Sp} of G/H .
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The first remarkable example: the canonical almost complex structure
J = 1√

3
(θ − θ2) on any homogeneous 3-symmetric space (N.A.Stepanov,

J.Wolf, A.Gray, 1967-1968), and many-many applications up to now ...
The main conjecture: For homogeneous k-symmetric spaces (k ≥ 3) the

algebra A(θ) contains a rich collection of classical structures. – YES!!!
Concentrate on the following affinor structures of classical types:
almost complex structures J (J2 = −1);
almost product structures P (P 2 = 1);
f -structures (f3 + f = 0) (K.Yano, 1963);
h-structures (h3 − h = 0) (V.F.Kirichenko, 1983).
f -structures and h-structures generalize the structures J and P .
We use the notation: s = [k−1

2 ] (integer part), u = s (for odd k), and
u = s + 1 (for even k).
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Theorem 1 (VVB, N.A.Stepanov, 1991, 1998). Let G/H be a homoge-
neous k-symmetric space.

(1) All non-trivial canonical f -structures on G/H can be given by the
operators

f =
2

k

u∑
m=1

 u∑
j=1

ζj sin
2πmj

k

(θm − θk−m) ,
where ζj ∈ {−1; 0; 1}, j = 1, 2, . . . , u, and not all coefficients ζj
are zero. In particular, suppose that −1 /∈ spec θ. Then the
polynomials f define canonical almost complex structures J iff all
ζj ∈ {−1; 1}.
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(2) All canonical h-structures on G/H can be given by the polynomials

h =
k−1∑
m=0

amθ
m, where:

(a) if k = 2n + 1, then

am = ak−m =
2

k

u∑
j=1

ξj cos
2πmj

k
;

(b) if k = 2n, then

am = ak−m =
1

k

2

u∑
j=1

ξj cos
2πmj

k
+ (−1)mξn


Here the numbers ξj take their values from the set {−1; 0; 1} and
the polynomials h define canonical structures P iff all ξj ∈ {−1; 1}.
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We particularize the results for orders 3, 4, and 6 only.
1. For a homogeneous 3-symmetric space there are (up to sign) the fol-

lowing canonical structures of classical type on G/H :

J =
1√
3

(θ − θ2), P = 1.

2. On a homogeneous 4-symmetric space there are (up to sign) the fol-
lowing canonical classical structures:

P = θ2, f =
1

2
(θ − θ3), h1 =

1

2
(1− θ2), h2 =

1

2
(1 + θ2).

3. On a homogeneous 6-symmetric space there are (up to sign) the fol-
lowing canonical f–structures:

f1 =

√
3

6
(θ+θ2−θ4−θ5), f2 =

√
3

6
(θ−θ2+θ4−θ5), f3 = f1+f2, f4 = f1−f2.
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We give another explanation for canonical structures f and P .
Let us write the corresponding ϕ-invariant decomposition of the Lie alge-

bra g:
g = h⊕m = m0 ⊕m = m0 ⊕m1 ⊕ ...⊕mu,

where the subspaces m1, . . . ,mu correspond to the spectrum of the operator
θ.
Denote by fi, where i = 1, 2, . . . , s, the base canonical f -structure whose

image is the subspace mi. All the other canonical f -structures are algebraic
sums of some base canonical f -structures.
The base canonical almost product structure Pi has mi as a (+1)-subspace,

the others mj, j 6= i form (−1)-subspace.
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2. The generalized Hermitian geometry.
2.1. Metric f -structures.
Let (M, g, J) be an almost Hermitian manifold. We recall main classes of

almost Hermitian structures:

K Kähler structure: ∇J = 0;
H Hermitian structure: ∇X(J)Y −∇JX(J)JY = 0;
G1 AH-structure of class G1, or ∇X(J)X −∇JX(J)JX = 0;

G1-structure:
NK nearly Kähler structure, ∇X(J)X = 0.

or NK-structure:

It is well known (see, for example, Gray-Hervella 16 classes, 1980) that
K ⊂ H ⊂ G1; K ⊂ NK ⊂ G1.
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Now we consider some classes of metric f -structures.
A fundamental role in the geometry of metric f -manifolds is played by the
composition tensor T (V.F.Kirichenko, 1986):

T (X, Y ) =
1

4
f (∇fX(f )fY −∇f2X(f )f2Y ),

where ∇ is the Levi-Civita connection of a (pseudo)Riemannian manifold
(M, g), X, Y ∈ X(M).
Using this tensor T , the algebraic structure of a so-called adjoint Q-

algebra in X(M) can be defined by the formula:

X ∗ Y = T (X, Y ).

It gives the opportunity to introduce some classes of metric f -structures in
terms of natural properties of the adjoint Q-algebra.
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Kf Kähler f–structure: ∇f = 0;
Hf Hermitian f–structure: T (X, Y ) = 0, i.e. X(M) is

an abelian Q-algebra;
G1f f -structure of class G1, or T (X,X) = 0, i.e. X(M) is

G1f -structure: an anticommutative Q-algebra;
Kill f Killing f -structure: ∇X(f )X = 0;
NKf nearly Kähler f -structure, ∇fX(f )fX = 0.

or NKf -structure:

The following relationships between the classes mentioned are evident:
Kf ⊂ Hf ⊂ G1f ; Kf ⊂ Kill f ⊂ NKf ⊂ G1f .
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It is important to note that in the special case f = J we obtain the corre-
sponding classes of almost Hermitian structures (16 Gray-Hervella classes).
In particular, for f = J the classes Kill f and NKf coincide with the

well-known class NK of nearly Kähler structures.
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2.3. Invariant metric f-structures on homogeneous mani-
folds
Any invariant metric f -structure on a reductive homogeneous space G/H

determines the orthogonal decomposition m = m1 ⊕ m2 such that m1 =
Im f , m2 = Ker f .

Theorem 2. (2001) Any invariant metric f -structure on a naturally
reductive space (G/H, g) is a G1f -structure.

As a special case (Ker f = 0), it follows the theorem of E.Abbena-
S.Garbiero).
We stress the particular role of homogeneous 4- and 5-symmetric spaces.
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Theorem 3. The canonical f -structure f = 1
2(θ−θ3) on any naturally

reductive 4-symmetric space (G/H, g) is both a Hermitian f -structure
and a nearly Kähler f -structure. Moreover, the following conditions
are equivalent:
1) f is a Kähler f -structure; 2) f is a Killing f -structure; 3) f

is a quasi-Kähler f -structure; 4) f is an integrable f -structure; 5)
[m1,m1] ⊂ h; 6) [m1,m2] = 0; 7) G/H is a locally symmetric space:
[m,m] ⊂ h.
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Theorem 4. Let (G/H, g) be a naturally reductive 5-symmetric space,
f1 and f2, J1 and J2 the canonical structures on this space. Then f1
and f2 belong to both classes Hf and NKf. Moreover, the following
conditions are equivalent:
1) f1 is a Kähler f -structure; 2) f2 is a Kähler f -structure; 3) f1 is

a Killing f -structure; 4) f2 is a Killing f -structure; 5) f1 is a quasi-
Kähler f -structure; 6) f2 is a quasi-Kähler f -structure; 7) f1 is an
integrable f -structure; 8) f2 is an integrable f -structure; 9) J1 and J2
are NK-structures; 10) [m1,m2] = 0 (here m1 = Imf1 = Ker f2,m2 =
Im f2 = Ker f1); 11) G/H is a locally symmetric space: [m,m] ⊂ h.

We formulate several recent general results:
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Theorem 5 (A.Samsonov, 2011). Let (G/H, g) be a homogeneous k-
symmetric space with any ”diagonal” metric g. Then, any base canon-
ical f -structure fi, with i = 1, 2, . . . , s on G/H is a nearly Kähler
f -structure.

Theorem 6 (A.Samsonov, 2011). Let (G/H, g) be a homogeneous k-
symmetric space with any ”diagonal” metric g. Then, for any base
canonical f -structure fi on M , the following assertions hold:
1) if 3i 6= k, then fi belongs to the class Hf;
2) if 3i = k, then fi ∈ Hf ⇔ [mi,mi] ⊂ h.

Note that the above theorems generalize some known results obtained
earlier for orders k = 3, 4, 5 (including the classical results of N.A.Stepanov
and A.Gray for homogeneous 3-symmetric spaces).
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Besides, there are invariant NKf -structures and Hf -structures on homo-
geneous spaces (G/H, g), where the metric g is not naturally reductive.
The example of such a kind can be realized on the 6-dimensional general-
ized Heisenberg group (N, g). These groups were introduced by A.Kaplan
and studied by F.Tricerri, L.Vanhecke, J.Berndt and others.

Theorem 7. The 6-dimensional generalized Heisenberg group (N, g)
with respect to the canonical f -structure f = 1

2(θ−θ3) of a homogeneous
Φ-space of order 4 is both Hf - and NKf -manifold. This f -structure
is neither Killing nor integrable on (N, g).



20

2.2. Left-invariant f -structures on 2-step nilpotent Lie groups.
Some results below were obtained jointly with Pavel Dubovik and Olga

Radivanovich. We start with several important examples.
Example 1.
The 6–dimensional generalized Heisenberg group (N, g) (A.Kaplan,1983).

It is the Riemannian homogeneous 6–symmetric space (N, g,Φ), and the
left-invariant canonical almost Hermitian structure J = f3 is a strictly
G1–structure (i.e. neither nearly Kähler nor Hermitian structure).
It should be mentioned that G1–structures of such a kind have interesting

applications in heterotic strings (P.Ivanov, S.Ivanov, 2005).
Example 2. Consider the 5–dimensional Heisenberg group H(2, 1) as

a Riemannian homogeneous 6–symmetric space in two ways. Then all the
canonical f -structures fi, i = 1, . . . , 4 are Hermitian f -structures. Besides,



21

the base f -structures f1 and f2 are integrable, but the other f -structures
f3 and f4 are not integrable. In addition, f1, f2, f3 are nearly Kähler f -
structures, but f4 is not.
We notice that the group H(2, 1) is used in constructing the 6-dimensional

nilmanifold connected with the heterotic equations of motion in string
theory (M.Fernandez, S.Ivanov, L.Ugarte, R.Villacampa, 2009).

General approach. Let G be a 2-step nilpotent Lie group, g its Lie
algebra, Z(g) the center of g. Consider a left-invariant metric f -structure
on G with respect to a left-invariant Riemannian metric g on G.

Theorem 8 (VVB, P.Dubovik, 2013). (i) If Z(g) ⊂ Ker f then f is a
Hermitian f -structure, but it is not a Kähler f -structure.
(ii) If Imf ⊂ Z(g) then f is both a Hermitian and a nearly Kähler
f -structure, but it is not a Kähler f -structure.
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Example 3. Let H(n, 1) be a (2n + 1)-dimensional matrix Heisen-
berg group. We can consider H(n, 1) as a Riemannian homogeneous k–
symmetric space, where k is even.
As an application of the previous theorem, we obtain

Theorem 9 (VVB, P.Dubovik, 2013). Any left-invariant canonical f -
structure on a (2n + 1)-dimensional matrix Heisenberg group H(n, 1)
is a Hermitian f -structure, but it is not a Kähler f -structure.
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3.3. Left-invariant f -structures on filiform Lie groups.
Let g be a nilpotent Lie algebra of dimension m. Let

C0g ⊃ C1g ⊃ · · · ⊃ Cm−2g ⊃ Cm−1g = 0
be the descending central series of g, where

C0g = g, Cig = [g, Ci−1g], 1 ≤ i ≤ m− 1.
A Lie algebra g is called filiform (first, M.Vergne; later M.Kerr, T.Payne,

2010) if dimCkg = m − k − 1 for k = 1, . . . ,m − 1. A Lie group G is
called filiform if its Lie algebra is filiform.
Note that the filiform Lie algebras have the maximal possible nilindex,

that is m− 1.
Basic examples of (n + 1)-dimensional filiform Lie algebras:
1. The Lie algebra Ln:
[X0, Xi] = Xi+1, i = 1, . . . , n− 1.
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2. The Lie algebra Qn(n = 2k + 1):
[X0, Xi] = Xi+1, i = 1, . . . , n− 1,
[Xi, Xn−i] = (−1)iXn, i = 1, . . . , k.

The classification of 6-dimensional nilpotent Lie algebras was obtained by
V.V.Morozov (1958), there exist 32 types of such algebras.
We select from this list 5 filiform Lie algebras:
(1) The Lie algebra g = L5:
[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6.
(2) The Lie algebra g = Q5:
[e1, e2] = e3, [e1, e5] = e6, [e2, e3] = e4, [e2, e4] = e5, [e3, e4] = e6.
And the other three filiform Lie algebras.

We construct (VVB, P.Dubovik, 2016) a number of left-invariant Hermit-
ian f -structures on all these 6-dimensional filiform Lie groups.
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3.4. Left-invariant f -structures on the groups H(p, r).
The following groups were introduced by M.Goze and Y.Haraguchi (1982):

H(p, r) = M1p ×Mpr ×M1r,

where matrices Mij have dimensions 1× p, p× r, 1× r respectively.
The multiplication in H(p, r):

(x, y, z) (x′, y′, z′) = (x + x′, y + y′, z + z′ +
1

2
(xy′ − x′y)).

H(p, r) is a (rp+ r+ p)-dimensional 2-step nilpotent Lie group, which can
be equipped with the left-invariant Riemannian metric g. The particular
case H(p, 1) (i.e. r = 1) is exactly the matrix Heisenberg group.

Theorem 10. (P.Piu, M.Goze, 1993) (H(p, r), g) is naturally reduc-
tive if and only if H(p, r) is a Heisenberg group (i.e. r = 1).
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Denote by h(p, r) the corresponding Lie algebra.
Question. Are there canonical f -structures on the groups H(p, r)?
Example. (VVB, O.Radivanovich, 2017) Consider the case p = r = 2,

i.e. the 8-dimensional group H(2, 2). Lie brackets for the orthonormal basis
in h(2, 2) are:

[e1, e5] = [e2, e7] = e3, [e1, e6] = [e2, e8] = e4.

We construct 1-parameter set of metric automorphisms ϕα of order 4 of the
Lie algebra h(2, 2). As a result, H(2, 2) is a Riemannian 4-symmetric space
for any ϕα. It is interesting to note that all the canonical fα–structures are
non-integrable and belong to no one classes in the generalized Hermitian
geometry. This is a first example of such a kind.
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3. Homogeneous Riemannian geometry.
Riemannian almost product manifold (M, g, P ) naturally admits two com-

plementary mutually orthogonal distributions V (vertical) and H (hori-
zontal) corresponding to the eigenvalues 1 and −1 of P , respectively. In
accordance with the Naveira classification there are 36 classes of Riemann-
ian almost product structures (8 types for each of distributions). Here we
consider the following types of distributions (in terms of vertical ones):
F (foliation): ∇A(P )B = ∇B(P )A;
AF (anti-foliation): ∇A(P )A = 0;
TGF (totally geodesic foliation): ∇AP = 0,
where A and B are vertical vector fields.

It is known (O. Gil-Medrano) that the system of conditions AF and F is
equivalent to the condition TGF .
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Now we concentrate on invariant almost product structures on Riemannian
homogeneous manifolds.
Let (G/H, g = 〈·, ·〉, P ) be a naturally reductive homogeneous space. It

was proved before (VVB, 1998) that both vertical and horizontal distribu-
tions of this structure P are always of type AF . Besides, these distributions
may be of type F (hence, TGF ) under simple algebraic criteria.
It means that, in accordance with the Naveira classification, there are

exactly three classes of invariant naturally reductive almost product struc-
tures. They are (TGF,TGF), (TGF,AF), (AF,AF).
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We apply these results for canonical structures P on homogeneous k-
symmetric spaces with the ”diagonal” metrics.
Let G be a semisimple compact Lie group, B the Killing form of the Lie

algebra g, G/H a homogeneous k-symmetric space. As above, consider the
canonical decomposition

g = h⊕m = m0 ⊕m = m0 ⊕m1 ⊕ ...⊕mu,

where some subspaces can be trivial. We define the collection of ”diagonal”
Riemannian metrics on G/H by the formula

〈X, Y 〉 = λ1B(X1, Y1) + ... + λuB(Xu, Yu),

where X, Y ∈ g, i = 1, u, Xi, Yi ∈ mi from the above decomposition,
λi ∈ R, λi < 0.
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Theorem 11. Any the base canonical distribution mi, 1, u on Rie-
mannian k-symmetric space (G/H, g = 〈·, ·〉) is of type AF for all
”diagonal” metrics g.
Further, the distribution mi belongs to F (hence, TGF ) if and only

if one of the following cases is realized:

(1) The subspace m2i is trivial.
(2) The index i satisfies the condition k = 3i.
(3) [mi,mi] ⊂ h.
(4) If k = 2n, then i = n (i.e. mn belongs to F ).

It follows that for base canonical distributions the result doesn’t depend
on the function U . Note that for 4- and 5-symmetric spaces we have the
decomposition m = m1 ⊕m2, i.e. all canonical distributions are base.
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However, for other canonical distributions (e.g., mi⊕mj) the situation is
more complicated.
Example (homogeneous 6-symmetric spaces).
Here the decomposition is the following: m = m1 ⊕m2 ⊕m3.

Theorem 12. Let G/H be a homogeneous 6-symmetric space, where
G is a compact semisimple Lie group. Suppose g is any diagonal
Riemannian metric on G/H represented by the collection (λ1, λ2, λ3).
Then:

(1) m2 and m3 are of type TGF .
(2) m1 belongs to type TGF if and only if [m1,m1] ⊂ h.
(3) m1 ⊕ m2 is of type AF if and only if any of the following two

conditions is satisfied: (a)λ1 = λ2; (b) [m1,m2] ⊂ m1.
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(4) m1 ⊕ m2 is of type F if and only if [m1,m2] ⊂ m1. This is also a
criterion for type TGF .

(5) m1 ⊕ m3 is of type AF if and only if any of the following two
conditions is satisfied: (a)λ1 = λ3; (b) [m1,m3] = 0.

(6) m1⊕m3 is of type F if and only if both the following relations hold:
[m1,m1] ⊂ h, [m1,m3] = 0. This is also a criterion for type TGF .

(7) m2 ⊕ m3 is of type AF if and only if any of the following two
conditions is satisfied: (a)λ2 = λ3; (b) [m2,m3] = 0.

(8) m2 ⊕ m3 is of type F if and only if [m2,m3] = 0. This is also a
criterion for type TGF .

This theorem gives the opportunity to characterize the Naveira classes for
all combinations of the above canonical distributions. As an example, the
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canonical structure P3 belongs to the class (TGF , TGF ) if and only if
[m1,m2] ⊂ m1.
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4. Elliptic integrable systems.
The the m-th elliptic integrable systems associated to a k′-symmetric

space N = G/Go were introduced by C.L. Terng [Terng, Chuu-Lian Ge-
ometries and symmetries of soliton equations and integrable elliptic
equations // Surveys on geometry and integrable systems, 401–488, Adv.
Stud. Pure Math., 51, Math. Soc. Japan, Tokyo, 2008.] This approach
was intensively investigated and greatly developped in the book: I. Khemar,
Elliptic integrable systems: a comprehensive geometric interpretation
// Memoirs of the AMS. 2012. V. 219, no. 1031. x+217 pp. (below we try
to keep notations of the author). More exactly, various geometric objects,
partially known and completely new, closely related to these systems were
intensively investigated.
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Let τ be an automorphism of order k′ (k′ ≥ 1) of a real Lie algebra g,
gC = ⊕j∈Zk′g

C
j the corresponding eigenvalue decomposition, where gCj is

the eigenspace of τC with respect to the eigenvalue ω
j
k′, and ωk′ is a k′-th

primitive root of unity. Using the automorphism τ one can construct (under
the known assumptions) a k′-symmetric space N = G/Go. Further, let L
be a Riemann surface. Then the m-th elliptic integrable system (briefly,
(m, g, τ )-system) associated to (g, τ ) (or, to N = G/Go) can be written
as a zero curvature equation

dαλ +
1

2
[αλ ∧ αλ] = 0, ∀λ ∈ C∗,

where αλ =
∑m
j=0 λ

−juj + λjūj =
∑m
j=−m λ

jα̂j is a 1-form on the
Riemann surface L taking values in the Lie algebra g, the ”coefficient” uj
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is a 1-form on L with values in the eigenspace gC−j. This integer m is called

the order of the (m, g, τ )-system (not the order in the sense of PDE!).
Briefly, there are several types of elliptic integrable systems. As an ex-

ample, the first elliptic integrable system associated to a symmetric space
(resp. to a Lie group) is the equation for harmonic maps f : L → G/Go
into this symmetric space (resp. to this Lie group), see e.g. [Dorfmeister,
J.; Pedit, F.; Wu, H. Weierstrass type representation of harmonic maps
into symmetric spaces. Comm. Anal. Geom. 6 (1998), no. 4, 633–668. ;
Uhlenbeck, Karen. Harmonic maps into Lie groups: classical solutions of
the chiral model. J. Differential Geom. 30 (1989), no. 1, 1–50. ].
The second elliptic integrable systems associated to 4-symmetric spaces

can be geometrically interpreted in term of vertically harmonic twistor lifts
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[see e.g. Burstall, Francis E.; Khemar, Idrisse. Twistors, 4-symmetric
spaces and integrable systems. Math. Ann. 344 (2009), no. 2, 451–461].
For geometrical interpretation of arbitrary (m, g, τ )-systems the author

proposed a number of new notions, constructions, methods and applied
them to studying these systems. Specifically, a concept of ”generalized”
twistor spaces Z2k(M) and twistor lifts were introduced.
Here the situation is more complicated (the fibre is a 2k-symmetric space

instead of a symmetric space). It should be noted that almost complex

structures J, J∗ (for k′ = 2k + 1) and f -structures F [m], F , F ∗ (for
k′ = 2k) effectively used throughout the book are exactly only the par-
ticular examples of a remarkable collection of the canonical structures on
homogeneous k′-symmetric spaces in the above our sense.
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Further, the notions of holomorphically harmonic and stringy harmonic
maps were introduced. In some sense, these maps correspond to harmonic
maps when the Levi-Civita connection is replaced by a metric connection
with torsion. In this direction one of the main results is the variational
interpretation of stringy harmonicity by means of a sigma model with a
Wess-Zumino term.
The author gives new examples of integrable two-dimensional nonlinear

sigma models in (2k+ 1)-symmetric spaces that are not symmetric spaces.
We note that in this respect nearly Kähler and G1-structures from the
Gray-Hervella classification of almost Hermitian structures are of special
interest [see Gray, Alfred; Hervella, Luis M. The sixteen classes of almost
Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl.
(4) 123 (1980), 35–58; Friedrich, Thomas; Ivanov, Stefan. Parallel spinors
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and connections with skew-symmetric torsion in string theory. Asian J.
Math. 6 (2002), no. 2, 303–335.].
The author considered generalized harmonic maps into f -manifolds. Us-

ing the natural splitting TN = H⊕V on the Riemannian manifold (N, h)
with a metric f -structure F as well as an idea of a skew-symmetric torsion,
new notions for metric f -manifolds (N,F, h) were introduced and studied.
They are: reductive metric f -manifolds, the extended Nijenhuis ten-
sor, metric f -manifolds of global type G1, horizontally of type G1 and
some others. This is a new general approach to generalizing almost Her-
mitian geometry. The other notions introduced here such as horizontally
Hermitian and horizontally Kähler f -manifolds are close to the generalized
Hermitian geometry in the above our sense.
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5. Canonical structures of ”metallic family”.
Recently a new type of affinor structures was introduced. It was initiated

by the quadratic equation x2 − x − 1 = 0 for the Golden ratio (Golden

section, Golden proportion, Divine ratio, ...). The positive root 1+
√

5
2 = φ

of this equation is the Golden ratio (the Phidias number).
Definition 1. (M.Crasmareanu, C.-E.Hretcanu, 2008). Affinor structure F

on a manifold M is called a Golden structure if F 2 = F + id.
This notion is a particular case of a general concept of a polynomial

structure on M (S.Goldberg, K.Yano, 1970).
Further, fix two positive integers p and q. The positive solution σp,q of

the equation x2 − px − q = 0 is called a (p, q)-metallic number. These
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numbers

σp,q =
p +

√
p2 + 4q

2
of the metallic means family were considered by Vera W. de Spinadel
(1997 and later).
Some particular cases of the numbers from the metallic means family:

the golden mean φ = 1+
√

5
2 if p = q = 1;

the silver mean σ2,1 = 1 +
√

2 for p = 2, q = 1;

the bronze mean σ3,1 = 3+
√

13
2 for p = 3, q = 1;

the copper mean σ1,2 = 2 for p = 1, q = 2 and so on.
It should be mentioned that many authors wrote about close relation

of some metallic numbers to classical Fibonacci numbers, Pell numbers,
design, fractal geometry, dynamical systems, quasicrystals etc.
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Definition 2. (M.Crasmareanu, C.-E.Hretcanu, 2013). Affinor structure F
on a manifold M is called a metallic structure if F 2 = pF +qI. For a Rie-
mannian manifold (M, g) the structure F is called a metallic Riemannian
structure if g(FX, Y ) = g(X,FY ) for any vector fields X, Y .
Any almost product structure P induces two metallic structures on M :

F1 =
p

2
I + (

2σp,q − p
2

)P, F2 =
p

2
I − (

2σp,q − p
2

)P.

Conversely, any metallic structure F on M determines two almost product
structures:

P = ±(
2

2σp,q − p
F − p

2σp,q − p
I).

Moreover, P is a Riemannian almost product structure on (M, g) if and
only if F1, F2 are metallic Riemannian structures.
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Theorem 13. (2017) All canonical metallic structures F on homogeneous
k-symmetric spaces G/H can be described by the formula

F = p
2I ± (

2σp,q−p
2 )

k−1∑
m=0

amθ
m, where:

(1) if k = 2n + 1, then

am = ak−m =
2

k

u∑
j=1

ξj cos
2πmj

k
;

(2) if k = 2n, then

am = ak−m =
1

k

2

u∑
j=1

ξj cos
2πmj

k
+ (−1)mξn


Here ξj ∈ {−1; 1}.
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Example. Homogeneous 4-symmetric spaces.

Here P = θ2. It follows that all canonical metallic structures are repre-
sented by the formula:

F =
p

2
I ± (

2σp,q − p
2

)θ2.

Main conclusion: The properties of the metallic structures F can be ob-
tained from those of the corresponding almost product structures P . It
follows that many previous results about invariant distributions and struc-
tures on homogeneous k-symmetric spaces and nilpotent Lie groups can be
adapted and reformulated in terms of metallic structures.
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Linear deformations of almost product structures
Let P be an almost product structure on a manifold M . An affinor

structure
F = F (a, b) = aP + b I,

where I = id, a, b ∈ R, a 6= 0, is called a linear deformation of the
structure P .
The structure F = F (a, b) is polynomial of degree 2, more exactly, it

satisfies the following equation:

F 2 − 2b F + (b2 − a2) I = 0.

Evidently, all metallic structures are particular cases of the structures F =
F (a, b), namely:

a = ±
√
p2 + 4q

2
, b =

p

2
.
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Theorem 14. The Nijenhuis tensors of the structures P and F =
F (a, b) = aP + b I, are proporsional, more exactly,

NF (X, Y ) = a2NP (X, Y )

for any vector fields X and Y on M. It follows that the structures P
and F = F (a, b) are integrable or non-integrable simultaneously.

This theorem generalizes the results of many authors obtained for partic-
ular cases of metallic structures.
Other results: Canonical structures F = F (a, b) on homogeneous k-

symmetric spaces G/H (full description, compatibility with Riemannian
metrics, the corresponding canonical distributions onG/H etc.), left-invariant
structures F = F (a, b) on particular nilpotent Lie groups.
Conclusion: Many results for the structures F = F (a, b) can be obtained

applying known results for the corresponding almost product structures P .
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6. Symplectic geometry.
M a smooth manifold of dimension 2n, Ω non-singular 2-form, then

(M,Ω) is an almost symplectic manifold. If, in addition, (dΩ = 0), then
M is called a symplectic manifold.
Recently pairs of compatible symplectic structures (bi-Poisson geometry)

were considered when studying bi-Hamiltonian systems (Bolsinov A.V.,
Izosimov A.M., Tsonev D.M., Zhang P., 2016-2017). However, the case
of almost symplectic structures (dΩ 6= 0) is also of essential interest, in
particular, for an investigation of Hamiltonian vector fields and integrable
almost-symplectic Hamiltonian systems (F. Fasso,N. Sansonetto, I. Vais-
man)
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If (g, J) is an almost Hermitian structure on M , then the tensor field
Ω(X, Y ) = g(X, JY ) is skew-symmetric, i.e. (M,Ω) is an almost sym-
plectic manifold. Here 2-form Ω is usually called the fundamental form
(Kähler form) of the structure (g, J) on M . If dΩ = 0, then (g, J) is called
almost Kähler structure.
Our goal is to construct a collection of invariant almost symplectic struc-

tures on homogeneous k-symmetric spaces using canonical almost com-
plex structures on these spaces. Note that the almost symplectic struc-
ture on homogeneous k-symmetric space G/H defined by the formula
ΩJ(X, Y ) = g(X, JY ), where J is a canonical almost complex structure,
is said to be canonical almost symplectic structure.
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Theorem 15. Let (G/H, g) be a Riemannian homogeneous k-symmetric
space, where −1 /∈ spec θ and the metric g is invariant with respect
to both G and the ”symmetries” {Sp}. Denote by s a number of dif-

ferent pairs k-th roots of unity from spec(θ). Then G/H admits 2s−1

different (up to sign) canonical almost symplectic structures, which
are invariant with respect to both G and the ”symmetries” {Sp}. In
addition, any of these structures ΩJ is invariant with respect to all
canonical almost complex structures as well as all canonical almost
product structures on G/H.

Example 1. Riemannian homogeneous 3-symmetric spaces admit the canon-
ical almost symplectic structure ΩJ defined by the canonical almost com-
plex structure J = 1√

3
(θ − θ2).
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Example 2. Riemannian homogeneous 5-symmetric spaces with maximal
spectrum of the operator θ admit two canonical almost symplectic struc-
tures defined by the canonical almost complex structures J1 and J2.
Remark. It’s well-known that many flag manifolds, Ledger-Obata spaces,

some nilpotent Lie groups have the structure of Riemannian homogeneous
k-symmetric spaces. It gives the opportunity to effectively construct canon-
ical almost symplectic structures on these homogeneous manifolds.

We should mention other geometric structures on homogeneous k-symmetric
spaces, which are of contemporary interest in geometry and topology:
- symplectic structures on k-symmetric spaces compatible with the corre-

sponding ”symmetries” of order k (A.Tralle, M.Bocheński);
- topology of homogeneous k-symmetric spaces, in particular, geometric

formality (D. Kotschick, S. Terzić, Jelena Grbić).
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