Quantitative isoperimetric inequalities in geometric settings

Verena Bögelein

Department of Mathematics Paris Lodron Universität Salzburg

Dirac operators in differential geometry and global analysis – in memory of Thomas Friedrich (1949–2018) Bedlewo, 08.10.2019.

De Giorgi's optimal isoperimetric inequality

For any set $E \subset \mathbb{R}^n$ of finite perimeter the classical isoperimetric inequality

$$\mathbf{A}_{n}(E) \leq \gamma_{n} \mathbf{A}_{n-1}(\partial E)^{\frac{n}{n-1}}, \qquad \gamma_{n} = n^{-\frac{n}{n-1}} \omega_{n}^{-\frac{1}{n-1}}$$

holds true.

Equality holds if and only if $E = B_{\varrho}(x_o)$.

Almgren's optimal isoperimetric inequality

In 1986 Almgrem proved in the following higher co-dimension version (in the context of integer multiplicity rectifiable currents):

Theorem (Almgren 1986, Indiana Univ. Math.)

For any closed (n - 1)-dimensional oriented surface T in \mathbb{R}^{n+k} and any area minimizer Q_T with boundary $\partial Q_T = T$ there holds:

$$\mathbf{A}_{n}(Q_{T}) \leq \gamma_{n} \mathbf{A}_{n-1}(T)^{\frac{n}{n-1}},$$

$$\gamma_{n} = n^{-\frac{n}{n-1}} \omega_{n}^{-\frac{1}{n-1}}.$$

where

" = " \Leftrightarrow Q_T is a flat n-dimensional disk D.

Flat disks have least boundary area

Corollary

Amongst closed (n-1)-dimensional oriented surfaces T in \mathbb{R}^{n+k} spanning the same area (i.e. the area minimizing surfaces with boundary T possess the same area), flat spheres of dimension (n-1) have least area. This means:

Suppose T is a closed (n-1)-dimensional oriented surface and Q_T some area minimzer with boundary $\partial Q_T = T$. Then for any disk D with $\mathbf{A}_n(D) = \mathbf{A}_n(Q_T)$ there holds

$$\mathbf{A}_{n-1}(\partial D) \le \mathbf{A}_{n-1}(T). \tag{1}$$

"= " \Leftrightarrow T is the boundary of some flat disk D with volume $\mathbf{A}_n(Q_T)$.

A natural geometric question is about the stability of (1) in the following sense:

Suppose that there holds:

$$\mathbf{D}(T) \coloneqq \frac{\mathbf{A}_{n-1}(T) - \mathbf{A}_{n-1}(\partial D)}{\mathbf{A}_{n-1}(\partial D)} \ll 1 \qquad \mathbf{A}_n(D) = \mathbf{A}_n(Q_T).$$

D(T) = renormalized isoperimetric gap.

$$\stackrel{?}{\implies} \quad \text{Is } T \text{ close to } \partial D?$$

More precisely, we want to prove

 $\mathbf{D}(T) \geq c \operatorname{dist}(T, \partial D)^2$

for some suitable distance of T to flat spheres.

A natural geometric question is about the stability of (1) in the following sense:

Suppose that there holds:

$$\mathbf{D}(T) \coloneqq \frac{\mathbf{A}_{n-1}(T) - \mathbf{A}_{n-1}(\partial D)}{\mathbf{A}_{n-1}(\partial D)} \ll 1 \qquad \mathbf{A}_n(D) = \mathbf{A}_n(Q_T).$$

D(T) = renormalized isoperimetric gap.

$$\stackrel{?}{\implies} \quad \text{Is } T \text{ close to } \partial D?$$

More precisely, we want to prove

 $\mathbf{D}(T) \geq c \operatorname{dist}(T, \partial D)^2$

for some suitable distance of *T* to flat spheres.

A natural geometric question is about the stability of (1) in the following sense:

Suppose that there holds:

$$\mathbf{D}(T) \coloneqq \frac{\mathbf{A}_{n-1}(T) - \mathbf{A}_{n-1}(\partial D)}{\mathbf{A}_{n-1}(\partial D)} \ll 1 \qquad \mathbf{A}_n(D) = \mathbf{A}_n(Q_T).$$

D(T) = renormalized isoperimetric gap.

$$\stackrel{?}{\implies} \quad \text{Is } T \text{ close to } \partial D?$$

More precisely, we want to prove

$$\mathbf{D}(T) \geq c \operatorname{dist}(T, \partial D)^2$$

for some suitable distance of T to flat spheres.

Another way to interpret stability

The isoperimetric quotient is defined by

$$\mu(T) \coloneqq \frac{\mathbf{A}_{n-1}(T)^{\frac{n}{n-1}}}{\mathbf{A}_n(Q_T)}.$$

 $\mu(T)$ is invariant under rigid motions.

Almgren proved that $T \mapsto \mu(T)$ attains its unique (i.e. unique up to rigid motions and homotheties) minimum in flat spheres, i.e.

$$\mu(\partial D) = \min\left\{\mu(T): T \text{ is } (n-1) \text{-dim, oriented, } \subset \mathbb{R}^{n+k}, \partial T = \varnothing\right\}$$

$$\mu(T) = \frac{\mathbf{A}_{n-1}(T)^{\frac{n}{n-1}}}{\mathbf{A}_n(Q_T)}$$
$$= \mu(\partial D) \left[1 + \frac{\mathbf{A}_{n-1}(T) - \mathbf{A}_{n-1}(\partial D)}{\mathbf{A}_{n-1}(\partial D)} \right]^{\frac{n}{n-1}} \quad (\mathbf{A}_n(Q_T) = \mathbf{A}_n(D)$$
$$= \mu(\partial D) \left[1 + \mathbf{D}(T) \right]^{\frac{n}{n-1}}$$
$$\ge \mu(\partial D) \left[1 + \mathbf{D}(T) \right] \qquad (\mathbf{D}(T) \ll 1)$$

We want to have a bound from below of D(T) by the square of a quantity which can be interpreted as a suitable distance of T to the (n-1)-dimensional flat spheres.

$$\mu(T) \geq \mu(\partial D) + c \operatorname{dist}(T, \partial D)^2.$$

Classics

- Bernstein (1905), Bonnesen (1924): Planar convex sets.
- ► Fuglede (1989): Convex sets, nearly spherical sets.
- ► Hall & Haymann & Weitsman (1991), Hall (1992): general sets in ℝⁿ.

Consider sets $E \subset \mathbb{R}^n$ which are nearly spherical in the sense that

$$\partial E = \left\{ (1 + u(\omega))\omega : \omega \in S^{n-1} \right\}$$

for some fuction $u: S^{n-1} \to \mathbb{R}$ satisfying

 $\|u\|_{C^1}\ll 1.$

 S^{n-1} should be the optimal sphere:

• $\mathbf{A}_n(E) = \mathbf{A}_n(B_1)$

•
$$bar(E) = 0$$

Consider sets $E \subset \mathbb{R}^n$ which are nearly spherical in the sense that

$$\partial E = \left\{ (1 + u(\omega))\omega : \omega \in S^{n-1} \right\}$$

for some fuction $u: S^{n-1} \to \mathbb{R}$ satisfying

 S^{n-1} should be the optimal sphere:

• $\mathbf{A}_n(E) = \mathbf{A}_n(B_1)$

• bar(E) = 0

Consider sets $E \subset \mathbb{R}^n$ which are nearly spherical in the sense that

$$\partial E = \left\{ (1 + u(\omega))\omega : \omega \in S^{n-1} \right\}$$

for some fuction $u: S^{n-1} \to \mathbb{R}$ satisfying

$$\|u\|_{C^1} \ll 1.$$
 EAthe optimal sphere:

 $\bullet \mathbf{A}_n(E) = \mathbf{A}_n(B_1)$

▶ bar(*E*) = 0

 S^{n-1} should be

• bar(E) = 0

Consider sets $E \subset \mathbb{R}^n$ which are nearly spherical in the sense that

$$\partial E = \left\{ (1 + u(\omega))\omega : \omega \in S^{n-1} \right\}$$

for some fuction $u: S^{n-1} \to \mathbb{R}$ satisfying

$$\|u\|_{C^1} \ll 1.$$

 S^{n-1} should be the optimal sphere:
 $\mathbf{A}_n(E) = \mathbf{A}_n(B_1)$
 $\mathbf{bar}(E) = 0$

Fuglede's theorem

Theorem (Fuglede)

There exist constants $\varepsilon_o(n) > 0$ and $c(n) < \infty$ such that there holds: For any nearly spherical set E whose volume is equal to the volume of the unit ball whose barycenter is at the origin and which satisfies $||u||_{C^1} \le \varepsilon_o$ we have

$$A_{n-1}(∂E) - A_{n-1}(∂B_1) ≥ c(n) ||u||^2_{W^{1,2}(S^{n-1})}.$$

In particular, the isoperimetric gap controls the square of the measure of the symmetric difference

$$E\Delta B_1 \coloneqq (E \smallsetminus B_1) \cup (B_1 \smallsetminus E),$$

since

$$\|u\|_{W^{1,2}(S^{n-1})}^2 \ge \|u\|_{L^2(S^{n-1})}^2 \ge c\|u\|_{L^1(S^{n-1})}^2 \ge c|E\Delta B_1|^2.$$

Fuglede's theorem

Theorem (Fuglede)

There exist constants $\varepsilon_o(n) > 0$ and $c(n) < \infty$ such that there holds: For any nearly spherical set E whose volume is equal to the volume of the unit ball whose barycenter is at the origin and which satisfies $||u||_{C^1} \le \varepsilon_o$ we have

$$\mathbf{A}_{n-1}(\partial E) - \mathbf{A}_{n-1}(\partial B_1) \ge c(n) \| u \|_{W^{1,2}(S^{n-1})}^2.$$

In particular, the isoperimetric gap controls the square of the measure of the symmetric difference

$$E\Delta B_1 \coloneqq (E \smallsetminus B_1) \cup (B_1 \smallsetminus E),$$

since

$$\|u\|_{W^{1,2}(S^{n-1})}^2 \ge \|u\|_{L^2(S^{n-1})}^2 \ge c\|u\|_{L^1(S^{n-1})}^2 \ge c|E\Delta B_1|^2.$$

Theorem (Fusco-Maggi-Pratelli, Ann. Math. 2008)

For any set *E* of finite perimeter with $|E| = |B_{\varrho}|$ the following quantitative isoperimetric inequality

$$\mathbf{D}(E) = \frac{\mathbf{A}_{n-1}(\partial E) - n\omega_n \varrho^{n-1}}{n\omega_n \varrho^{n-1}} \ge c(n)\alpha(E)^2$$

holds true, where

$$\alpha(E) \coloneqq \min_{x_o} \frac{|E \Delta B_{\varrho}(x_o)|}{\varrho^n}$$

denotes the Fraenkel asymmetry.

Different proofs:

- Figalli-Maggi-Pratelli (Invent. Math. 2010): New proof with arguments from optimal mass transport.
- Ciacalese-Leonardi (Arch. Rat. Mech. Anal. 2012): Proof via regularity by a selection principle.

Theorem (Fusco-Maggi-Pratelli, Ann. Math. 2008)

For any set *E* of finite perimeter with $|E| = |B_{\varrho}|$ the following quantitative isoperimetric inequality

$$\mathbf{D}(E) = \frac{\mathbf{A}_{n-1}(\partial E) - n\omega_n \varrho^{n-1}}{n\omega_n \varrho^{n-1}} \ge c(n)\alpha(E)^2$$

holds true, where

$$\alpha(E) \coloneqq \min_{x_o} \frac{|E\Delta B_{\varrho}(x_o)|}{\varrho^n}$$

denotes the Fraenkel asymmetry.

Different proofs:

- Figalli-Maggi-Pratelli (Invent. Math. 2010): New proof with arguments from optimal mass transport.
- Ciacalese-Leonardi (Arch. Rat. Mech. Anal. 2012): Proof via regularity by a selection principle.

The isoperimetric gap

For a closed (n-1)-dimensional oriented surface T in \mathbb{R}^{n+k} the isoperimetric gap is defined by

$$\mathbf{D}(T) \coloneqq \frac{\mathbf{A}_{n-1}(T) - \mathbf{A}_{n-1}(\partial D)}{\mathbf{A}_{n-1}(\partial D)},$$

where D a flat n-dimensional disk with

$$\mathbf{A}_n(D) = \mathbf{A}_n(Q_T) = \inf_{\partial P = T} \mathbf{A}_n(P)$$

The isoperimetric gap

For a closed (n-1)-dimensional oriented surface T in \mathbb{R}^{n+k} the isoperimetric gap is defined by

$$\mathbf{D}(T) \coloneqq \frac{\mathbf{A}_{n-1}(T) - \mathbf{A}_{n-1}(\partial D)}{\mathbf{A}_{n-1}(\partial D)},$$

where D a flat n-dimensional disk with

$$\mathbf{A}_n(D) = \mathbf{A}_n(Q_T) = \inf_{\partial P = T} \mathbf{A}_n(P)$$

$A_n(Q_{T-\partial D})$ measures how close T and ∂D are.

$A_n(Q_{T-\partial D})$ measures how close *T* and ∂D are.

 $A_n(Q_{T-\partial D})$ measures how close T and ∂D are.

The asymmetry index

The quantity

$$\mathbf{A}_n(Q_{T-\partial D}) = \inf_{\partial Q = T-\partial D} \mathbf{A}_n(Q)$$

measures how close T and ∂D are.

To measure the deviation of T from round spheres spanning the same mass as T we shall take the infimum over all such spheres.

The asymmetry index is defined by

 $\mathbf{d}(T) \coloneqq \inf_{D} \frac{\mathbf{A}_{n}(Q_{T-\partial D})}{\mathbf{A}_{n}(D)}$

whenever *T* is a closed (n-1)-dimensional oriented surface in \mathbb{R}^{n+k} . The infimum is taken over all *n*-dimensional flat disks satisfying $\mathbf{A}_n(D) = \mathbf{A}_n(Q_T)$.

The asymmetry index

The quantity

$$\mathbf{A}_n(Q_{T-\partial D}) = \inf_{\partial Q = T-\partial D} \mathbf{A}_n(Q)$$

measures how close T and ∂D are.

To measure the deviation of T from round spheres spanning the same mass as T we shall take the infimum over all such spheres.

The asymmetry index is defined by

$$\mathbf{d}(T) \coloneqq \inf_{D} \frac{\mathbf{A}_{n}(Q_{T-\partial D})}{\mathbf{A}_{n}(D)}$$

whenever *T* is a closed (n-1)-dimensional oriented surface in \mathbb{R}^{n+k} . The infimum is taken over all *n*-dimensional flat disks satisfying $\mathbf{A}_n(D) = \mathbf{A}_n(Q_T)$.

Theorem (B-Duzaar-Fusco)

There exists a constant c = c(n,k) such that for any closed (n-1)-dimensional oriented surface T in \mathbb{R}^{n+k} the quantitative isoperimetric inequality

$$\mathbf{D}(T) \ge c \, \mathbf{d}(T)^2 \tag{2}$$

holds true.

Remark: In the case k = 0, (2) reduces to the quantitative isoperimetric inequality of Fusco-Maggi-Pratelli, since in this case

 $\mathbf{d}(T) = \alpha(E)$ and $\mathbf{D}(T) = \mathbf{D}(E)$.

Isoperimetric inequality on the sphere

Theorem (E. Schmidt, Math. Z. 1943/44)

Geodesic balls are the unique isoperimetric sets on S^n , i.e. for any $E \subset S^n$ with $|E| = |B_{\vartheta}|$ with $0 < \vartheta < \pi$ there holds:

$$\mathbf{A}_{n-1}(\partial B_{\vartheta}) \leq \mathbf{A}_{n-1}(\partial E).$$

"= " \Leftrightarrow E is a geodesic ball B_{ϑ} .

Is there stability for the isoperimetric sets on the sphere?

Renormalized isoperimetric gap

$$\mathbf{D}(E) \coloneqq \frac{\mathbf{A}_{n-1}(\partial E) - \mathbf{A}_{n-1}(\partial B_{\vartheta})}{\mathbf{A}_{n-1}(\partial B_{\vartheta})} \qquad |B_{\vartheta}| = |E|$$

$$\alpha(E) \coloneqq \min_{p_o} \frac{|E \Delta B_{\vartheta}(p_o)|}{|B_{\vartheta}|}$$

Is there stability for the isoperimetric sets on the sphere?

Renormalized isoperimetric gap

$$\mathbf{D}(E) \coloneqq \frac{\mathbf{A}_{n-1}(\partial E) - \mathbf{A}_{n-1}(\partial B_{\vartheta})}{\mathbf{A}_{n-1}(\partial B_{\vartheta})} \qquad |B_{\vartheta}| = |E|$$

$$\alpha(E) \coloneqq \min_{p_o} \frac{|E \Delta B_{\vartheta}(p_o)|}{|B_{\vartheta}|}$$

Is there stability for the isoperimetric sets on the sphere?

Renormalized isoperimetric gap

$$\mathbf{D}(E) \coloneqq \frac{\mathbf{A}_{n-1}(\partial E) - \mathbf{A}_{n-1}(\partial B_{\vartheta})}{\mathbf{A}_{n-1}(\partial B_{\vartheta})} \qquad |B_{\vartheta}| = |E|$$

$$\alpha(E) \coloneqq \min_{p_o} \frac{|E \Delta B_{\vartheta}(p_o)|}{|B_{\vartheta}|}$$

Is there stability for the isoperimetric sets on the sphere?

Renormalized isoperimetric gap

$$\mathbf{D}(E) \coloneqq \frac{\mathbf{A}_{n-1}(\partial E) - \mathbf{A}_{n-1}(\partial B_{\vartheta})}{\mathbf{A}_{n-1}(\partial B_{\vartheta})} \qquad |B_{\vartheta}| = |E|$$

Is there stability for the isoperimetric sets on the sphere?

Renormalized isoperimetric gap

$$\mathbf{D}(E) \coloneqq \frac{\mathbf{A}_{n-1}(\partial E) - \mathbf{A}_{n-1}(\partial B_{\vartheta})}{\mathbf{A}_{n-1}(\partial B_{\vartheta})} \qquad |B_{\vartheta}| = |E|$$

Strong form of the quantitative isop. inequality in \mathbb{R}^n

Theorem (Fusco-Julin)

For any set *E* of finite perimeter with $|E| = |B_{\varrho}|$ the following strong quantitative isoperimetric inequality

$$\mathbf{D}(E) = \frac{\mathbf{A}_{n-1}(\partial E) - n\omega_n \varrho^{n-1}}{n\omega_n \varrho^{n-1}} \ge c(n)\beta(E)^2$$

holds true, where

$$\beta(E) \coloneqq \min_{x_o \in \mathbb{R}^n} \left(\frac{1}{\varrho^{n-1}} \int_{\partial^* E} |\nu_E(x) - \nu_{B_r(x_o)}(\pi_{x_o,\rho}(x))|^2 d\mathcal{H}^{n-1}(x) \right)^{\frac{1}{2}}$$

denotes the L²-oscillation index.

where $\vartheta(x) \coloneqq \arccos(x \cdot p_o)$.

where $\vartheta(x) \coloneqq \arccos(x \cdot p_o)$.

where $\vartheta(x) \coloneqq \arccos(x \cdot p_0)$.

where $\vartheta(x) \coloneqq \arccos(x \cdot p_0)$.

where $\vartheta(x) \coloneqq \arccos(x \cdot p_o)$.

where $\vartheta(x) \coloneqq \arccos(x \cdot p_o)$.

Strong quantitative isoperimetric inequality on S^n

Theorem (B-Duzaar-Fusco)

For any set $E \subset S^n$ of finite perimeter with $|E| = |B_{\vartheta}|$ the following the strong quantitative isoperimetric inequality

 $\mathbf{D}(E) \geq c\beta(E)^2$

П

holds true.

Remark: The inequality is sharp in the sense that also the reverse inequality holds:

 $\mathbf{D}(E) \leq \tilde{\mathbf{C}} \boldsymbol{\beta}(E)^2.$

Strong quantitative isoperimetric inequality on S^n

Theorem (B-Duzaar-Fusco)

For any set $E \subset S^n$ of finite perimeter with $|E| = |B_{\vartheta}|$ the following the strong quantitative isoperimetric inequality

 $\mathbf{D}(E) \geq c\beta(E)^2$

holds true.

Remark: The inequality is sharp in the sense that also the reverse inequality holds:

 $\mathbf{D}(E) \leq \tilde{c}\beta(E)^2.$

Isoperimetric inequality on hyperbolic space

Theorem (E. Schmidt, Math. Z. 1943/44)

Geodesic balls are the unique isoperimetric sets on \mathbb{H}^n .

Theorem (B-Duzaar-Scheven)

For any $R_o > 0$ there exists $c = c(n, R_o) > 0$ such that for any set $E \subset \mathbb{H}^n$ of finite perimeter with $|E| = |B_{\vartheta}|$ the following the strong quantitative isoperimetric inequality

$$\mathbf{D}(E) \ge c\,\boldsymbol{\beta}(E)^2$$

holds true.

Isoperimetric inequality on hyperbolic space

Theorem (E. Schmidt, Math. Z. 1943/44)

Geodesic balls are the unique isoperimetric sets on \mathbb{H}^n .

Theorem (B-Duzaar-Scheven)

For any $R_o > 0$ there exists $c = c(n, R_o) > 0$ such that for any set $E \subset \mathbb{H}^n$ of finite perimeter with $|E| = |B_{\vartheta}|$ the following the strong quantitative isoperimetric inequality

$$\mathbf{D}(E) \ge c\beta(E)^2$$

holds true.