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De Giorgi’s optimal isoperimetric inequality

For any set E ⊂ Rn of finite perimeter the classical isoperimetric
inequality

An(E) ≤ γn An−1(∂E)
n

n−1 , γn = n−
n

n−1ω
−

1
n−1

n

holds true.

Equality holds if and only if E = B%(xo).



Almgren’s optimal isoperimetric inequality

In 1986 Almgrem proved in the following higher co-dimension
version (in the context of integer multiplicity rectifiable currents):

Theorem (Almgren 1986, Indiana Univ. Math.)

For any closed (n − 1)-dimensional oriented surface T in Rn+k

and any area minimizer QT with boundary ∂QT = T there holds:

An(QT ) ≤ γn An−1(T )
n

n−1 ,

where
γn = n−

n
n−1ω

−
1

n−1
n .

“ = ” ⇔ QT is a flat n-dimensional disk D.



Flat disks have least boundary area

Corollary
Amongst closed (n − 1)-dimensional oriented surfaces T in
Rn+k spanning the same area (i.e. the area minimizing surfaces
with boundary T possess the same area), flat spheres of
dimension (n − 1) have least area. This means:

Suppose T is a closed (n − 1)-dimensional oriented surface
and QT some area minimzer with boundary ∂QT = T . Then for
any disk D with An(D) = An(QT ) there holds

An−1(∂D) ≤ An−1(T ). (1)

“ = ” ⇔ T is the boundary of some flat disk D with
volume An(QT ).



Stability
A natural geometric question is about the stability of (1) in the
following sense:

Suppose that there holds:

D(T ) ∶= An−1(T ) −An−1(∂D)
An−1(∂D)

≪ 1 An(D) = An(QT ).

D(T ) = renormalized isoperimetric gap.

?Ô⇒ Is T close to ∂D?

More precisely, we want to prove

D(T ) ≥ c dist(T , ∂D)2

for some suitable distance of T to flat spheres.
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Another way to interpret stability

The isoperimetric quotient is defined by

µ(T ) ∶= An−1(T )
n

n−1

An(QT )
.

µ(T ) is invariant under rigid motions.

Almgren proved that T ↦ µ(T ) attains its unique (i.e. unique up
to rigid motions and homotheties) minimum in flat spheres, i.e.

µ(∂D) = min{µ(T ) ∶ T is (n − 1)-dim, oriented, ⊂ Rn+k , ∂T = ∅}



µ(T ) = An−1(T )
n

n−1

An(QT )

= µ(∂D)[1 + An−1(T ) −An−1(∂D)
An−1(∂D)

]
n

n−1

(An(QT ) = An(D)

= µ(∂D)[1 +D(T )]
n

n−1

≥ µ(∂D)[1 +D(T )] (D(T ) ≪ 1)

We want to have a bound from below of D(T ) by the square of
a quantity which can be interpreted as a suitable distance of T
to the (n − 1)-dimensional flat spheres.

µ(T ) ≥ µ(∂D) + c dist(T , ∂D)2.



Classics

▸ Bernstein (1905), Bonnesen (1924): Planar convex sets.

▸ Fuglede (1989): Convex sets, nearly spherical sets.

▸ Hall & Haymann & Weitsman (1991), Hall (1992): general
sets in Rn.



Nearly spherical sets

Consider sets E ⊂ Rn which are nearly spherical in the sense
that

∂E = {(1 + u(ω))ω ∶ ω ∈ Sn−1}

for some fuction u∶Sn−1 → R satisfying

∥u∥C1 ≪ 1.

Sn−1 should be the optimal sphere:
▸ An(E) = An(B1)
▸ bar(E) = 0
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Fuglede’s theorem
Theorem (Fuglede)
There exist constants εo(n) > 0 and c(n) < ∞ such that there
holds: For any nearly spherical set E whose volume is equal to
the volume of the unit ball whose barycenter is at the origin and
which satisfies ∥u∥C1 ≤ εo we have

An−1(∂E) −An−1(∂B1) ≥ c(n)∥u∥2
W 1,2(Sn−1)

.

◻

In particular, the isoperimetric gap controls the square of the
measure of the symmetric difference

E∆B1 ∶= (E ∖B1) ∪ (B1 ∖E),

since

∥u∥2
W 1,2(Sn−1)

≥ ∥u∥2
L2(Sn−1)

≥ c∥u∥2
L1(Sn−1)

≥ c∣E∆B1∣2.
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Theorem (Fusco-Maggi-Pratelli, Ann. Math. 2008)
For any set E of finite perimeter with ∣E ∣ = ∣B%∣ the following
quantitative isoperimetric inequality

D(E) = An−1(∂E) − nωn%
n−1

nωn%n−1 ≥ c(n)α(E)2

holds true, where

α(E) ∶= min
xo

∣E∆B%(xo)∣
%n

denotes the Fraenkel asymmetry. ◻

Different proofs:
▸ Figalli-Maggi-Pratelli (Invent. Math. 2010): New proof with

arguments from optimal mass transport.
▸ Ciacalese-Leonardi (Arch. Rat. Mech. Anal. 2012): Proof

via regularity by a selection principle.
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The isoperimetric gap

For a closed (n − 1)-dimensional oriented surface T in Rn+k the
isoperimetric gap is defined by

D(T ) ∶= An−1(T ) −An−1(∂D)
An−1(∂D)

,

where D a flat n-dimensional disk with

An(D) = An(QT ) = inf
∂P=T

An(P)
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An(QT−∂D) measures how close T and ∂D are.
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The asymmetry index

The quantity

An(QT−∂D) = inf
∂Q=T−∂D

An(Q)

measures how close T and ∂D are.

To measure the deviation of T from round spheres spanning
the same mass as T we shall take the infimum over all such
spheres.

The asymmetry index is defined by

d(T ) ∶= inf
D

An(QT−∂D)
An(D)

whenever T is a closed (n − 1)-dimensional oriented surface in
Rn+k . The infimum is taken over all n-dimensional flat disks
satisfying An(D) = An(QT ).
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Theorem (B-Duzaar-Fusco)
There exists a constant c = c(n,k) such that for any closed
(n − 1)-dimensional oriented surface T in Rn+k the quantitative
isoperimetric inequality

D(T ) ≥ c d(T )2 (2)

holds true. ◻

Remark: In the case k = 0, (2) reduces to the quantitative
isoperimetric inequality of Fusco-Maggi-Pratelli, since in this
case

d(T ) = α(E) and D(T ) = D(E).



Isoperimetric inequality on the sphere

Theorem (E. Schmidt, Math. Z. 1943/44)
Geodesic balls are the unique isoperimetric sets on Sn, i.e. for
any E ⊂ Sn with ∣E ∣ = ∣Bϑ∣ with 0 < ϑ < π there holds:

An−1(∂Bϑ) ≤ An−1(∂E).

“ = ” ⇔ E is a geodesic ball Bϑ.

ϑ

en+1

Bϑ

0



Stability

Is there stability for the isoperimetric sets on the sphere?
▸ Renormalized isoperimetric gap

D(E) ∶= An−1(∂E) −An−1(∂Bϑ)
An−1(∂Bϑ)

∣Bϑ∣ = ∣E ∣

▸ Assymmety index: Fraenkel assymmetry

α(E) ∶= min
po

∣E∆Bϑ(po)∣
∣Bϑ∣
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Strong form of the quantitative isop. inequality in Rn

Theorem (Fusco-Julin)
For any set E of finite perimeter with ∣E ∣ = ∣B%∣ the following
strong quantitative isoperimetric inequality

D(E) = An−1(∂E) − nωn%
n−1

nωn%n−1 ≥ c(n)β(E)2

holds true, where

β(E) ∶= min
xo∈Rn

( 1
%n−1 ∫∂∗E

∣νE(x) − νBr (xo)(πxo,ρ(x))∣2dHn−1(x))
1
2

denotes the L2-oscillation index. ◻



Stronger version of the assymmetry index on Sn

L2-oscillation index
b

po

∂E

bx
νE(x)

β(E) ∶= min
po∈Sn

( 1
Hn−1(Bϑ) ∫∂∗E

∣νE(x) − νBϑ(x)(po)(x)∣
2dHn−1(x))

1
2

≥ α(E),

where ϑ(x) ∶= arccos(x ⋅ po).
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Strong quantitative isoperimetric inequality on Sn

Theorem (B-Duzaar-Fusco)
For any set E ⊂ Sn of finite perimeter with ∣E ∣ = ∣Bϑ∣ the
following the strong quantitative isoperimetric inequality

D(E) ≥ c β(E)2

holds true. ◻

Remark: The inequality is sharp in the sense that also the
reverse inequality holds:

D(E) ≤ c̃ β(E)2.
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Isoperimetric inequality on hyperbolic space

Theorem (E. Schmidt, Math. Z. 1943/44)
Geodesic balls are the unique isoperimetric sets on Hn.

Theorem (B-Duzaar-Scheven)
For any Ro > 0 there exists c = c(n,Ro) > 0 such that for any set
E ⊂ Hn of finite perimeter with ∣E ∣ = ∣Bϑ∣ the following the strong
quantitative isoperimetric inequality

D(E) ≥ c β(E)2

holds true. ◻
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