Quantitative isoperimetric inequalities in geometric settings

Verena Bögelein

Department of Mathematics
Paris Lodron Universität Salzburg

Dirac operators in differential geometry and global analysis

- in memory of Thomas Friedrich (1949-2018)

Bȩdlewo, 08.10.2019.

De Giorgi's optimal isoperimetric inequality

For any set $E \subset \mathbb{R}^{n}$ of finite perimeter the classical isoperimetric inequality

$$
\mathbf{A}_{n}(E) \leq \gamma_{n} \mathbf{A}_{n-1}(\partial E)^{\frac{n}{n-1}}, \quad \gamma_{n}=n^{-\frac{n}{n-1}} \omega_{n}^{-\frac{1}{n-1}}
$$

holds true.
Equality holds if and only if $E=B_{\varrho}\left(x_{o}\right)$.

Almgren's optimal isoperimetric inequality

In 1986 Almgrem proved in the following higher co-dimension version (in the context of integer multiplicity rectifiable currents):

Theorem (Almgren 1986, Indiana Univ. Math.)
For any closed ($n-1$)-dimensional oriented surface T in \mathbb{R}^{n+k} and any area minimizer Q_{T} with boundary $\partial Q_{T}=T$ there holds:

$$
\mathbf{A}_{n}\left(Q_{T}\right) \leq \gamma_{n} \mathbf{A}_{n-1}(T)^{\frac{n}{n-1}}
$$

where

$$
\gamma_{n}=n^{-\frac{n}{n-1}} \omega_{n}^{-\frac{1}{n-1}} .
$$

$"=" \Leftrightarrow Q_{T}$ is a flat n-dimensional disk D.

Flat disks have least boundary area

Corollary
Amongst closed ($n-1$)-dimensional oriented surfaces T in \mathbb{R}^{n+k} spanning the same area (i.e. the area minimizing surfaces with boundary T possess the same area), flat spheres of dimension ($n-1$) have least area. This means:

Suppose T is a closed ($n-1$)-dimensional oriented surface and Q_{T} some area minimzer with boundary $\partial Q_{T}=T$. Then for any disk D with $\mathbf{A}_{n}(D)=\mathbf{A}_{n}\left(Q_{T}\right)$ there holds

$$
\begin{equation*}
\mathbf{A}_{n-1}(\partial D) \leq \mathbf{A}_{n-1}(T) \tag{1}
\end{equation*}
$$

$"=" \Leftrightarrow T$ is the boundary of some flat disk D with volume $\mathbf{A}_{n}\left(Q_{T}\right)$.

Stability

A natural geometric question is about the stability of (1) in the following sense:
Suppose that there holds:

$$
\mathbf{D}(T):=\frac{\mathbf{A}_{n-1}(T)-\mathbf{A}_{n-1}(\partial D)}{\mathbf{A}_{n-1}(\partial D)} \ll 1 \quad \mathbf{A}_{n}(D)=\mathbf{A}_{n}\left(Q_{T}\right)
$$

$\mathbf{D}(T)=$ renormalized isoperimetric gap.

More precisely, we want to prove

Stability

A natural geometric question is about the stability of (1) in the following sense:
Suppose that there holds:

$$
\mathbf{D}(T):=\frac{\mathbf{A}_{n-1}(T)-\mathbf{A}_{n-1}(\partial D)}{\mathbf{A}_{n-1}(\partial D)} \ll 1 \quad \mathbf{A}_{n}(D)=\mathbf{A}_{n}\left(Q_{T}\right)
$$

$\mathbf{D}(T)=$ renormalized isoperimetric gap.

$$
\xrightarrow{?} \text { Is } T \text { close to } \partial D ?
$$

More precisely, we want to prove

Stability

A natural geometric question is about the stability of (1) in the following sense:
Suppose that there holds:

$$
\mathbf{D}(T):=\frac{\mathbf{A}_{n-1}(T)-\mathbf{A}_{n-1}(\partial D)}{\mathbf{A}_{n-1}(\partial D)} \ll 1 \quad \mathbf{A}_{n}(D)=\mathbf{A}_{n}\left(Q_{T}\right)
$$

$\mathbf{D}(T)=$ renormalized isoperimetric gap.

$$
\stackrel{?}{\Longrightarrow} \quad \text { Is } T \text { close to } \partial D ?
$$

More precisely, we want to prove

$$
\mathbf{D}(T) \geq c \operatorname{dist}(T, \partial D)^{2}
$$

for some suitable distance of T to flat spheres.

Another way to interpret stability

The isoperimetric quotient is defined by

$$
\boldsymbol{\mu}(T):=\frac{\mathbf{A}_{n-1}(T)^{\frac{n}{n-1}}}{\mathbf{A}_{n}\left(Q_{T}\right)}
$$

$\mu(T)$ is invariant under rigid motions.
Almgren proved that $T \mapsto \mu(T)$ attains its unique (i.e. unique up to rigid motions and homotheties) minimum in flat spheres, i.e.
$\boldsymbol{\mu}(\partial D)=\min \left\{\boldsymbol{\mu}(T): T\right.$ is $(n-1)$-dim, oriented, $\left.\subset \mathbb{R}^{n+k}, \partial T=\varnothing\right\}$

$$
\begin{align*}
\mu(T) & =\frac{\mathbf{A}_{n-1}(T)^{\frac{n}{n-1}}}{\mathbf{A}_{n}\left(Q_{T}\right)} \\
& =\boldsymbol{\mu}(\partial D)\left[1+\frac{\mathbf{A}_{n-1}(T)-\mathbf{A}_{n-1}(\partial D)}{\mathbf{A}_{n-1}(\partial D)}\right]^{\frac{n}{n-1}} \tag{n}\\
& =\boldsymbol{\mu}(\partial D)[1+\mathbf{D}(T)]^{\frac{n}{n-1}} \\
& \geq \boldsymbol{\mu}(\partial D)[1+\mathbf{D}(T)]
\end{align*}
$$

(D $(T) \ll 1)$
We want to have a bound from below of $\mathbf{D}(T)$ by the square of a quantity which can be interpreted as a suitable distance of T to the ($n-1$)-dimensional flat spheres.

$$
\mu(T) \geq \mu(\partial D)+c \operatorname{dist}(T, \partial D)^{2} .
$$

Classics

- Bernstein (1905), Bonnesen (1924): Planar convex sets.
- Fuglede (1989): Convex sets, nearly spherical sets.
- Hall \& Haymann \& Weitsman (1991), Hall (1992): general sets in \mathbb{R}^{n}.

Nearly spherical sets

Consider sets $E \subset \mathbb{R}^{n}$ which are nearly spherical in the sense that

$$
\partial E=\left\{(1+u(\omega)) \omega: \omega \in S^{n-1}\right\}
$$

for some fuction $u: S^{n-1} \rightarrow \mathbb{R}$ satisfying

$$
\|u\|_{C^{1}} \ll 1 .
$$

Nearly spherical sets

Consider sets $E \subset \mathbb{R}^{n}$ which are nearly spherical in the sense that

$$
\partial E=\left\{(1+u(\omega)) \omega: \omega \in S^{n-1}\right\}
$$

for some fuction $u: S^{n-1} \rightarrow \mathbb{R}$ satisfying

$$
\|u\|_{C^{1}} \ll 1 .
$$

S^{n-1} should be the optimal sphere:

Nearly spherical sets

Consider sets $E \subset \mathbb{R}^{n}$ which are nearly spherical in the sense that

$$
\partial E=\left\{(1+u(\omega)) \omega: \omega \in S^{n-1}\right\}
$$

for some fuction $u: S^{n-1} \rightarrow \mathbb{R}$ satisfying

$$
\|u\|_{C^{1}} \ll 1 .
$$

S^{n-1} should be the optimal sphere:

- $\mathbf{A}_{n}(E)=\mathbf{A}_{n}\left(B_{1}\right)$
- $\operatorname{bar}(E)=0$

Nearly spherical sets

Consider sets $E \subset \mathbb{R}^{n}$ which are nearly spherical in the sense that

$$
\partial E=\left\{(1+u(\omega)) \omega: \omega \in S^{n-1}\right\}
$$

for some fuction $u: S^{n-1} \rightarrow \mathbb{R}$ satisfying

$$
\|u\|_{C^{1}} \ll 1 .
$$

S^{n-1} should be the optimal sphere:

- $\mathbf{A}_{n}(E)=\mathbf{A}_{n}\left(B_{1}\right)$
- $\operatorname{bar}(E)=0$

Fuglede's theorem

Theorem (Fuglede)

There exist constants $\varepsilon_{0}(n)>0$ and $c(n)<\infty$ such that there holds: For any nearly spherical set E whose volume is equal to the volume of the unit ball whose barycenter is at the origin and which satisfies $\|u\|_{C^{1}} \leq \varepsilon_{0}$ we have

$$
\mathbf{A}_{n-1}(\partial E)-\mathbf{A}_{n-1}\left(\partial B_{1}\right) \geq c(n)\|u\|_{W^{1}, 2\left(S^{n-1}\right)}^{2} .
$$

In particular, the isoperimetric gap controls the square of the measure of the symmetric difference

$$
E \Delta B_{1}:=\left(E \backslash B_{1}\right) \cup\left(B_{1} \backslash E\right),
$$

since

Fuglede's theorem

Theorem (Fuglede)

There exist constants $\varepsilon_{0}(n)>0$ and $c(n)<\infty$ such that there holds: For any nearly spherical set E whose volume is equal to the volume of the unit ball whose barycenter is at the origin and which satisfies $\|u\|_{C^{1}} \leq \varepsilon_{0}$ we have

$$
\mathbf{A}_{n-1}(\partial E)-\mathbf{A}_{n-1}\left(\partial B_{1}\right) \geq c(n)\|u\|_{W^{1,2}\left(S^{n-1}\right)}^{2}
$$

In particular, the isoperimetric gap controls the square of the measure of the symmetric difference

$$
E \Delta B_{1}:=\left(E \backslash B_{1}\right) \cup\left(B_{1} \backslash E\right)
$$

since

$$
\|u\|_{W^{1,2}\left(S^{n-1}\right)}^{2} \geq\|u\|_{L^{2}\left(S^{n-1}\right)}^{2} \geq c\|u\|_{L^{1}\left(S^{n-1}\right)}^{2} \geq c\left|E \Delta B_{1}\right|^{2}
$$

Theorem (Fusco-Maggi-Pratelli, Ann. Math. 2008)
For any set E of finite perimeter with $|E|=\left|B_{\varrho}\right|$ the following quantitative isoperimetric inequality

$$
\mathbf{D}(E)=\frac{\mathbf{A}_{n-1}(\partial E)-n \omega_{n} \varrho^{n-1}}{n \omega_{n} \varrho^{n-1}} \geq c(n) \alpha(E)^{2}
$$

holds true, where

$$
\alpha(E):=\min _{x_{0}} \frac{\left|E \Delta B_{\varrho}\left(x_{0}\right)\right|}{\varrho^{n}}
$$

denotes the Fraenkel asymmetry.
Different proofs:

- Figalli-Maggi-Pratelli (Invent. Math. 2010): New proof with arguments from optimal mass transport.
-Ciacalese-Leonardi (Arch. Rat. Mech. Anal. 2012): Proof via regularity by a selection principle.

Theorem (Fusco-Maggi-Pratelli, Ann. Math. 2008)

For any set E of finite perimeter with $|E|=\left|B_{\varrho}\right|$ the following quantitative isoperimetric inequality

$$
\mathbf{D}(E)=\frac{\mathbf{A}_{n-1}(\partial E)-n \omega_{n} \varrho^{n-1}}{n \omega_{n} \varrho^{n-1}} \geq c(n) \alpha(E)^{2}
$$

holds true, where

$$
\alpha(E):=\min _{x_{0}} \frac{\left|E \Delta B_{Q}\left(x_{0}\right)\right|}{\varrho^{n}}
$$

denotes the Fraenkel asymmetry.
Different proofs:

- Figalli-Maggi-Pratelli (Invent. Math. 2010): New proof with arguments from optimal mass transport.
- Ciacalese-Leonardi (Arch. Rat. Mech. Anal. 2012): Proof via regularity by a selection principle.

The isoperimetric gap

For a closed ($n-1$)-dimensional oriented surface T in \mathbb{R}^{n+k} the isoperimetric gap is defined by

$$
\mathbf{D}(T):=\frac{\mathbf{A}_{n-1}(T)-\mathbf{A}_{n-1}(\partial D)}{\mathbf{A}_{n-1}(\partial D)}
$$

where D a flat n -dimensional disk with

$$
\mathbf{A}_{n}(D)=\mathbf{A}_{n}\left(Q_{T}\right)
$$

The isoperimetric gap

For a closed ($n-1$)-dimensional oriented surface T in \mathbb{R}^{n+k} the isoperimetric gap is defined by

$$
\mathbf{D}(T):=\frac{\mathbf{A}_{n-1}(T)-\mathbf{A}_{n-1}(\partial D)}{\mathbf{A}_{n-1}(\partial D)}
$$

where D a flat n -dimensional disk with

$$
\mathbf{A}_{n}(D)=\mathbf{A}_{n}\left(Q_{T}\right)=\inf _{\partial P=T} \mathbf{A}_{n}(P)
$$

$A_{n}\left(Q_{T-\partial D}\right)$ measures how close T and ∂D are.

$A_{n}\left(Q_{T-\partial D}\right)$ measures how close T and ∂D are.

$A_{n}\left(Q_{T-\partial D}\right)$ measures how close T and ∂D are.

The asymmetry index

The quantity

$$
\mathbf{A}_{n}\left(Q_{T-\partial D}\right)=\inf _{\partial Q=T-\partial D} \mathbf{A}_{n}(Q)
$$

measures how close T and ∂D are.
To measure the deviation of T from round spheres spanning the same mass as T we shall take the infimum over all such spheres.

The asymmetry index is defined by

> whenever T is a closed ($n-1$)-dimensional oriented surface in \mathbb{R}^{n+k}. The infimum is taken over all n-dimensional flat disks satisfying $\mathbf{A}_{n}(D)=\mathbf{A}_{n}\left(Q_{T}\right)$.

The asymmetry index

The quantity

$$
\mathbf{A}_{n}\left(Q_{T-\partial D}\right)=\inf _{\partial Q=T-\partial D} \mathbf{A}_{n}(Q)
$$

measures how close T and ∂D are.
To measure the deviation of T from round spheres spanning the same mass as T we shall take the infimum over all such spheres.

The asymmetry index is defined by

$$
\mathbf{d}(T):=\inf _{D} \frac{\mathbf{A}_{n}\left(Q_{T-\partial D}\right)}{\mathbf{A}_{n}(D)}
$$

whenever T is a closed ($n-1$)-dimensional oriented surface in \mathbb{R}^{n+k}. The infimum is taken over all n-dimensional flat disks satisfying $\mathbf{A}_{n}(D)=\mathbf{A}_{n}\left(Q_{T}\right)$.

Theorem (B-Duzaar-Fusco)

There exists a constant $c=c(n, k)$ such that for any closed ($n-1$)-dimensional oriented surface T in \mathbb{R}^{n+k} the quantitative isoperimetric inequality

$$
\begin{equation*}
\mathbf{D}(T) \geq c \mathbf{d}(T)^{2} \tag{2}
\end{equation*}
$$

holds true.
Remark: In the case $k=0$, (2) reduces to the quantitative isoperimetric inequality of Fusco-Maggi-Pratelli, since in this case

$$
\mathbf{d}(T)=\alpha(E) \quad \text { and } \quad \mathbf{D}(T)=\mathbf{D}(E)
$$

Isoperimetric inequality on the sphere

Theorem (E. Schmidt, Math. Z. 1943/44)
Geodesic balls are the unique isoperimetric sets on S^{n}, i.e. for any $E \subset S^{n}$ with $|E|=\left|B_{\vartheta}\right|$ with $0<\vartheta<\pi$ there holds:

$$
\mathbf{A}_{n-1}\left(\partial \boldsymbol{B}_{\vartheta}\right) \leq \mathbf{A}_{n-1}(\partial E) .
$$

$"=" \Leftrightarrow E$ is a geodesic ball B_{ϑ}.

Stability

Is there stability for the isoperimetric sets on the sphere?

- Renormalized isoperimetric gap

- Assymmety index: Fraenkel assymmetry

$$
\alpha(E):=\min _{p_{0}} \frac{\left|E \wedge B_{0}\left(\boldsymbol{p}_{0}\right)\right|}{\left|B_{v}\right|}
$$

Stability

Is there stability for the isoperimetric sets on the sphere?

- Renormalized isoperimetric gap

$$
\mathbf{D}(E):=\frac{\mathbf{A}_{n-1}(\partial E)-\mathbf{A}_{n-1}\left(\partial B_{\vartheta}\right)}{\mathbf{A}_{n-1}\left(\partial B_{\vartheta}\right)} \quad\left|B_{\vartheta}\right|=|E|
$$

- Assymmety index: Fraenkel assymmetry

Stability

Is there stability for the isoperimetric sets on the sphere?

- Renormalized isoperimetric gap

$$
\mathbf{D}(E):=\frac{\mathbf{A}_{n-1}(\partial E)-\mathbf{A}_{n-1}\left(\partial \boldsymbol{B}_{\vartheta}\right)}{\mathbf{A}_{n-1}\left(\partial \boldsymbol{B}_{\vartheta}\right)} \quad\left|\boldsymbol{B}_{\vartheta}\right|=|E|
$$

- Assymmety index: Fraenkel assymmetry

$$
\alpha(E):=\min _{p_{0}} \frac{\left|E \Delta B_{\vartheta}\left(p_{0}\right)\right|}{\left|B_{\vartheta}\right|}
$$

Stability

Is there stability for the isoperimetric sets on the sphere?

- Renormalized isoperimetric gap

$$
\mathbf{D}(E):=\frac{\mathbf{A}_{n-1}(\partial E)-\mathbf{A}_{n-1}\left(\partial \boldsymbol{B}_{\vartheta}\right)}{\mathbf{A}_{n-1}\left(\partial \boldsymbol{B}_{\vartheta}\right)} \quad\left|\boldsymbol{B}_{\vartheta}\right|=|E|
$$

- Assymmety index: Fraenkel assymmetry

$$
\alpha(E):=\min _{p_{0}} \frac{\left|E \Delta B_{\vartheta}\left(p_{0}\right)\right|}{\left|B_{\vartheta}\right|}
$$

Stability

Is there stability for the isoperimetric sets on the sphere?

- Renormalized isoperimetric gap

$$
\mathbf{D}(E):=\frac{\mathbf{A}_{n-1}(\partial E)-\mathbf{A}_{n-1}\left(\partial B_{\vartheta}\right)}{\mathbf{A}_{n-1}\left(\partial B_{\vartheta}\right)} \quad\left|B_{\vartheta}\right|=|E|
$$

- Assymmety index: Fraenkel assymmetry

$$
\alpha(E):=\min _{p_{0}} \frac{\left|E \Delta B_{\vartheta}\left(p_{0}\right)\right|}{\left|B_{\vartheta}\right|}
$$

Strong form of the quantitative isop. inequality in \mathbb{R}^{n}

Theorem (Fusco-Julin)
For any set E of finite perimeter with $|E|=\left|B_{e}\right|$ the following strong quantitative isoperimetric inequality

$$
\mathbf{D}(E)=\frac{\mathbf{A}_{n-1}(\partial E)-n \omega_{n} \varrho^{n-1}}{n \omega_{n} \varrho^{n-1}} \geq c(n) \boldsymbol{\beta}(E)^{2}
$$

holds true, where

$$
\boldsymbol{\beta}(E):=\min _{x_{0} \in \mathbb{R}^{n}}\left(\frac{1}{\varrho^{n-1}} \int_{\partial^{*} E}\left|\nu_{E}(x)-\nu_{B_{r}\left(x_{0}\right)}\left(\pi_{x_{0}, \rho}(x)\right)\right|^{2} d \mathcal{H}^{n-1}(x)\right)^{\frac{1}{2}}
$$

denotes the L^{2}-oscillation index.

Stronger version of the assymmetry index on S^{n}

where $\vartheta(x):=\arccos \left(x \cdot p_{0}\right)$.

Stronger version of the assymmetry index on S^{n}

where $\vartheta(x):=\arccos \left(x \cdot p_{0}\right)$.

Stronger version of the assymmetry index on S^{n}

where $\vartheta(x):=\arccos \left(x \cdot p_{0}\right)$.

Stronger version of the assymmetry index on S^{n}

where $\vartheta(x):=\arccos \left(x \cdot p_{0}\right)$.

Stronger version of the assymmetry index on S^{n}

$$
\begin{aligned}
& L^{2} \text {-oscillation index } \\
& \boldsymbol{\beta}(E):=\min _{p_{0} \in S^{n}}\left(\frac{1}{\mathcal{H}^{n-1}\left(B_{\vartheta}\right)} \int_{\partial^{*} E}\left|\nu_{E}(x)-\nu_{B_{\vartheta(x)}\left(p_{o}\right)}(x)\right|^{2} d \mathcal{H}^{n-1}(x)\right)^{\frac{1}{2}}
\end{aligned}
$$

where $\vartheta(x):=\arccos \left(x \cdot p_{0}\right)$.

Stronger version of the assymmetry index on S^{n}

$$
\begin{aligned}
& L^{2} \text {-oscillation index } \\
& \boldsymbol{\beta}(E):=\min _{p_{0} \in S^{n}}\left(\frac{1}{\mathcal{H}^{n-1}\left(B_{\vartheta}\right)} \int_{\partial^{*} E}\left|\nu_{E}(x)-\nu_{B_{\vartheta(x)}\left(p_{o}\right)}(x)\right|^{2} d \mathcal{H}^{n-1}(x)\right)^{\frac{1}{2}} \\
& \quad \geq \boldsymbol{\alpha}(E) \text {, } \\
& \text { where } \vartheta(x):=\arccos \left(x \cdot p_{0}\right) .
\end{aligned}
$$

Strong quantitative isoperimetric inequality on S^{n}

Theorem (B-Duzaar-Fusco)
For any set $E \subset S^{n}$ of finite perimeter with $|E|=\left|B_{\vartheta}\right|$ the following the strong quantitative isoperimetric inequality

$$
\mathbf{D}(E) \geq \mathbf{c} \boldsymbol{\beta}(E)^{2}
$$

holds true.

Remark: The inequality is sharp in the sense that also the reverse inequality holds:

$$
\mathbf{D}(E) \leq \tilde{c} \beta(E)^{2} .
$$

Strong quantitative isoperimetric inequality on S^{n}

Theorem (B-Duzaar-Fusco)
For any set $E \subset S^{n}$ of finite perimeter with $|E|=\left|B_{\vartheta}\right|$ the following the strong quantitative isoperimetric inequality

$$
\mathbf{D}(E) \geq \boldsymbol{c} \boldsymbol{\beta}(E)^{2}
$$

holds true.

Remark: The inequality is sharp in the sense that also the reverse inequality holds:

$$
\mathbf{D}(E) \leq \tilde{c} \beta(E)^{2}
$$

Isoperimetric inequality on hyperbolic space

Theorem (E. Schmidt, Math. Z. 1943/44)
Geodesic balls are the unique isoperimetric sets on \mathbb{H}^{n}.

Theorem (B-Duzaar-Scheven)
For any $R_{0}>0$ there exists $c=c\left(n, R_{0}\right)>0$ such that for any set $E \subset \mathbb{H}^{n}$ of finite perimeter with $|E|=\left|B_{\vartheta}\right|$ the following the strong quantitative isoperimetric inequality

$$
\mathbf{D}(E) \geq c \beta(E)^{2}
$$

holds true.

Isoperimetric inequality on hyperbolic space

Theorem (E. Schmidt, Math. Z. 1943/44)
Geodesic balls are the unique isoperimetric sets on \mathbb{H}^{n}.

Theorem (B-Duzaar-Scheven)
For any $R_{0}>0$ there exists $c=c\left(n, R_{0}\right)>0$ such that for any set $E \subset \mathbb{H}^{n}$ of finite perimeter with $|E|=\left|B_{\vartheta}\right|$ the following the strong quantitative isoperimetric inequality

$$
\mathbf{D}(E) \geq c \boldsymbol{\beta}(E)^{2}
$$

holds true.

