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Charles University, Czechia

Dirac operators in Differential geometry and Global analysis

In memory of professor Thomas Friedrich

Bedlewo, 10th October 2019



Symplectic Dirac operators

Defined by Katharina Habermann [KH, AGAG 1995],[KH,
CMP 1997]

Mp(2n,R)→ Sp(2n,R) 2 : 1 cover

Does not have any faithful finite dimensional representation.

It has unitary faithful representation on S = L2(Rn)
symplectic spinors

· : R2n × S → S symplectic Clifford multiplication, defined on
a dense subset of S

metaplectic structures defined similarly (”same diagram”)

If a symplectic manifold admits a metapl. structure,
symplectic Dirac operator is defined

locally as DS =
∑2n

i=1 ei · ∇
S
ei
s, for a lift ∇S to S of a

symplectic connection ∇ω, (ei )i a local symplectic basis

Further development (A. Klein, Brasch, Wyss, Krysl, Gutt,
Rawnsley...)
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Use of symplectic Dirac operators in representation theory.

Set-up: Principal H-bundle G → M for H a Lie group

Form H = G ×ρ H associated bundle. Then H is C k -smooth
with respect to canonical atlases if the corresponding
representation (ρ,H) is C k -differentiable.

The implication cannot be reversed (e.g., if G → M is trivial)

In case of lack of C k -differentiability, principal bundle pictures
– spaces C∞(G,H)H – should be used. For k = 0,
homeomorphism (wrt. to comp.-open topologies)
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Classical and other known situations

Borel–Weil: G semisimple Lie group, H Borel subgroup
(connected solvable Lie subgroup of G ), dimc H = 1, such
that the abelian part A of H acts by A ∋ X 7→ exp(log(X ),λ)

where λ is in a positive Weyl chamber and (, ) is the Killing

form on gc . Then Γhol(G/H,H) is irreducible G -module with
highest weight λ.

Bott–Borel–Weil: G semisimple, H Borel, H also one
dimensional: Representations characterized by cohomology of
sheaves resolving holomorphic sections (twisted Dolbeault
operators). H l(w)(G/H,H) irrep if w(λ+ ρ) is integral and in
the positive Weyl chamber.

Further generalizations: Rawnsley, Griffiths–Schmid, Wong,
Zierau, Wolf, Knapp, Barchini in direction: “compact =⇒
noncompact”, “weakening of dominance”, “dimension of H:
line =⇒ finite rank =⇒ infinite rank bundles”
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Generalize BBW in direction of rank
Hodge theory for infinite dimensional fibre bundles =⇒

Images shall be closed and ortho-complemented.

Theorem A[Krysl, AGAG 2014, 2015]: Let A be a C ∗-algebra and
(Hi → M)i be a sequence of finitely generated projective
sufficiently differentiable Hilbert A-bundles over a compact
manifold M. Suppose that images of Laplacians of an elliptic
A-equivariant complex in Γ(Hi ) are closed. Then the cohomology
groups of the complex are finitely generated projective Hilbert
A-modules.
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C ∗-algebras = (A, ∗, || ||), such that (A, ∗) is involutive
antiautomorphism, (A, || ||) is Banach algebra (ie., complete, norm
submultiplicative), and C ∗-identity ||aa∗|| = ||a||2 holds

Examples: End(H) – linear operators on finite dimensional scalar
product space, B(H) – bounded operators on a Hilbert space,
C (H) – compact operators on a Hilbert space, ∗ is the adjoint,
norm is the operator supremum norm; C 0(X ), X compact,
f ∗(x) = f (x), ||f || = supx∈X |f (x)| (norm).

Not example: L1(G ) – for G a Lie group of positive dimension
and a Haar measure on G .



Used analytic structures

Hilbert A-module = right A-module with product (, ) – A-valued,
sesquilinear (in the second input), hermitian, A-invariant; the norm
||v || =

√

||(v , v)||A makes it a Banach space. Generalization of
Hilbert space.
Note that H is generated just by one vector over B(H) or C (H).

Non-projective Hilbert C ∗-module (Manuilov)
A = C ([0, 1]), M = ℓ2(A) with ON-basis (ei )i

φi =











0, on [0, 1/i ] ∪ [1/i + 1, 1]

1, for ai = 1/2(1/i + 1/i + 1)

linear, otherwise

For T (ei ) = φie1, the subspace ’graph of T ’ is not
ortho-complementable in (M × {0})⊕ (M × {1}).
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Principal bundle situation

Let G → M be a principal G -bundle and ρ : G → U(H) a
unitary representation on a Hilbert space H

{ Isomorphism classes of Hilbert space bundles with structure
group a topological subgroup of U(H) } ←→ Ȟ1(M,U(H))
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Principal bundle situation

Let G → M be a principal G -bundle and ρ : G → U(H) a
unitary representation on a Hilbert space H

{ Isomorphism classes of Hilbert space bundles with structure
group a topological subgroup of U(H) } ←→ Ȟ1(M,U(H))

If U(H) is equipped with the strong (= uniform operator)
operator topology, the Čech (i.e., sheaf) cohomology group is
trivial =⇒ ∃ J : H → M ×H a fixed trivialization, defining a
bundle atlas on H.

Let C (H) be the algebra of compact operators on H.
Considering a normalisation (unitary part of the polarization)
of this trivialization, actions of C (H) on H and on Γ(H), and
a C (H)-valued product on Γ(H) may be defined making H a
finitely generated projective Hilbert bundle



Cohomology of bundles induced from principal bundles
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Theorem C [Krysl, CMP 2019]: Let M be a compact manifold,
G → M a principal G -bundle, and H → M be a finitely generated
projective Hilbert C (H)-bundle associated to G via a unitary
representation of G on infinite dimensional H. Let D•

J
be the

deRham complex twisted by the trivial connection induced by (the
normalization of) a trivialization J. Then the cohomology groups
of this complex are projective Hilbert C (H)-modules with
C (H)-rank equal to the Betti numbers of M.

Proof. [Krysl, CMP 2019]
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