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Introduction

Motivation

My interest comes from two particular cases:

CP 3 → S4 and F1,2(C3)→ CP 2.

These twistor spaces admit both a Kähler and a nearly Kähler
structure. Lagrangian submanifolds of the remaining two homogeneous
nearly Kähler spaces S3 × S3 and S6 have been studied a lot; see
[Eji81, DVW18, BMVV19, DVV90, Lot11, GIP03].

Goal

Find Lagrangian submanifolds of twistor spaces.

A start is made for F1,2(C3) in [Sto19].
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Twistor spaces

Twistor space

Let (M4, g) be an oriented Riemannian 4-manifold. For a complex
structure I ∈ End(TxM) we say I is compatible with the orientation if
(e1, I(e1), e3, I(e3)) is an oriented basis and we denote this by I � 0.
Consider the bundle π : Z →M4 whose fibre over a point x ∈M4 is
given by

π−1(x) = {I ∈ End(TxM) : I∗g = g, I2 = −1 and I � 0}.

The bundle Z is called the twistor space of (M4, g). The fibre is
isomorphic to SO(4)/U(2) ∼= CP 1.

We have

Z ∼= FSO(M4)×SO(4) SO(4)/U(2).

A point [u, I] ∈ FSO(M4)×SO(4) SO(4)/U(2) is an equivalence class of
a pair consisting of a frame u : R4 → TxM and a complex structure I
on R4 compatible with the metric and orientation.
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Twistor spaces

The Levi-Civita connection induces a splitting:

TIZ = T vI Z ⊕ T hI Z

π∗∼=
��

Tπ(I)M.

Two natural almost complex structures on Z are

J±I = ±JCP 1 + I.

Theorem ([AHS78])

J+ is integrable if and only if (M4, g) is anti-self-dual.

The almost complex structure J− is never integrable; see [Sal85].
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Twistor spaces

In addition to the almost complex structures we fix a Riemannian
metric

gλ = λgCP 1 ⊕ π∗g, λ > 0.

In the following we consider the almost Hermitian space (Z, J±, gλ).

Definition

A submanifold i : L→ (Z, J±, gλ) is Lagrangian when dim(L) = 3 and

J±(TxL) ⊥ TxL

for all x ∈ L.
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Superminimal surfaces

Superminimal surfaces

For an oriented surface f : Σ2 →M there is a lift F0 : Σ2 → Z given by

F0(x) =
{

a rotation by
π

2
in TxΣ

}
⊕
{

a rotation by
π

2
in TxΣ⊥

}
.

Let u = (e1, e2, e3, e4) be an oriented o.n.
local frame of f∗TM , such that (e1, e2) and
(e3, e4) are oriented bases of TΣ and TΣ⊥,
respectively. The complex structure F0 is
in the frame u expressed as

Z

π
��

Σ2
f
//

F0

>>

M

J0 := u−1 ◦ F0 ◦ u =

(
i 0
0 i

)
, where i =

(
0 −1
1 0

)
In terms of the associated bundle we have

F0(x) = [u(x), J0].
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Superminimal surfaces

Definition

An immersion f is superminimal if the vertical component (dF0)v of
dF0 vanishes, i.e. if F0 is horizontal.

Remark

If f is superminimal, then f is minimal. If f is minimal and F0 is
holomorphic, then f is superminimal; see [Fri84].

Lemma

For an oriented surface f : Σ→M the following are equivalent

1 the surface Σ is superminimal,

2 F0 ∈ End(f∗TM) is parallel, i.e. Hol(f∗∇) ⊆ U(2).
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Lagrangians

Goal

Find Lagrangian submanifolds of twistor spaces (Z, J±, gλ).

Let Σ ⊂M be an oriented surface. Define LΣ ⊂ Z by

LΣ ∩ π−1(x) = {I ∈ Z : I(Tπ(I)Σ) = Tπ(I)Σ
⊥}.

We will prove the following:

Theorem

If Σ ⊂M is a superminimal surface, then LΣ ⊂ Z is Lagrangian for
both J+ and J−. Conversely, if L ⊂ Z is Lagrangian for both J+ and
J−, then π(L) ⊂M is a superminimal surface.
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Lagrangians

The fibre of LΣ is in u = (e1, e2, e3, e4) parametrized by θ ∈ S1 as

Jθ(e1) = cos(θ)e3 + sin(θ)e4, Jθ(e2) = sin(θ)e3 − cos(θ)e4.
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x = {Jθ}θ∈S1

−J0

Figure: Complex structures of TxM
4 at a point x ∈ Σ.
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Lagrangians

The fibre of LΣ is in u = (e1, e2, e3, e4) parametrized by θ ∈ S1 as

Jθ(e1) = cos(θ)e3 + sin(θ)e4, Jθ(e2) = sin(θ)e3 − cos(θ)e4.

J0

S1
x = {Jθ}θ∈S1

U(2)

Remark

The group U(2) also preserves S1
x.
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Lagrangians

Proof of the theorem ⇒
Let Σ ⊂M be superminimal. A point in LΣ can be expressed as Jθ.
Note that TJθS

1
x ⊂ TJθLΣ. Consider the map

Fθ(x) = [u(x), Jθ] : Σ→ LΣ.

By the lemma from before we find that (dFθ)
v ⊂ TJθS1

x. Consequently,

im(dFθ)⊕ TJθS
1
x = TJθLΣ.
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By the lemma from before we find that (dFθ)
v ⊂ TJθS1

x. Consequently,

im(dFθ)⊕ TJθS
1
x = TJθLΣ.

Thus we can express a tangent vector X ∈ TJθLΣ as

X = Xv +Xh.

For Y ∈ TJθLΣ we have

gλ(J±(X), Y ) = ±gλ(JCP 1(Xv), Y v) + gλ(Jθ(X
h), Y h) = 0.

Thus LΣ is a Lagrangian submanifold.
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Lagrangians

Lemma

For an oriented surface Σ ⊂M the following are equivalent

1 the surface Σ is superminimal,

2 F0 ∈ End(f∗TM) is parallel, i.e. Hol(f∗∇) ⊆ U(2).

Proof.

Let γ : I → Σ be a curve.

(dγ′(t)F0)v =

(
d

dt
[u(γ(t)), J0]

)v
=

(
d

dt
[uh(γ(t)) · g(t), J0]

)v
=

(
d

dt
[uh(γ(t)), g(t)−1J0]

)v
=

d

dt
g(t)−1J0,

Thus g(t) ∈ stab(J0) ∼= U(2) if and only if (dγ′(t)F0)v = 0.
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Lagrangians
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