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(M,д) a (pseudo-) Riemannian spin manifold of dimension n,
∇д the Levi-Civita and the induced spin connection
Killing spinors
Let Ψ ∈ Γ(ΣM), where ΣM is the complex spinor bundle.

∇
д
XΨ = a X · Ψ (1)

I Killing number a ∈ C, either real or purely imaginary
I 1st integrability condition: RдX ,YΨ = −a

2 [X ·,Y ·]Ψ

⇒ (M,д) is Einstein with Scalд = 4a2 n(n − 1) .
I Ψ is an eigenvector of the Dirac operator : λ0 = −na
I λ0 is extremal in the sense of Friedrich’s inequality:

λ2 ≥ λ20 =
n

4(n−1) Scal
д

I Cone construction⇒ Holonomy classi�cation for
compact Riemannian manifolds via Berger’s list



Generalized Killing spinors

∇
д
XΨ = S(X ) · Ψ (2)

where S(X ) is a section of symmetric endomorphisms of TM .
I Originally discovered as the restriction of a parallel spinor

to a hypersurface. In this case, S(X ) is the shape operator.
Special cases by imposing restrictions on S(X ):
I T-Killing spinors ≡ tr(S) is constant

We are mostly interested in the case when the eigenvalues
are constant . The corresponding eigendistributions typically

come from an additional special Riemannian structure.
I SU(2)-structures (n = 5), SU(3)-structures (n = 6),

G2-structures (n = 7), Sasakian and 3-Sasakian structures
From this point of view, the equation is not invariant with
respect to the spin (pseudo-) Riemannian structure alone.



Killing(-Yano) forms
Let η ∈ Ωp(M) and φ ∈ Ωp+1(M).

∇
д
Xη = X y φ (3)

I Projectively invariant when appropriately weighted.
I Prolongation:

∧p+1 T∗ �
∧p T∗M ⊕

∧p+1 T∗M with the
tractor connection modi�ed by the Weyl tensor

Special Killing forms

∇
д
Xη = X y φ, ∇

д
Xφ = −c X

[ ∧ η (4)

I A prominent example are Sasakian structures.
I Cone construction⇒ Holonomy classi�cation
I We have Scal = c n(n − 1) for compact manifolds.

Q: Can we deduce Scal = c n(n − 1) for compact manifolds
directly without going through the classi�cation?



Killing spinor-valued forms
Let Φ ∈ Ωp(M, ΣM) and Ξ ∈ Ωp+1(M, ΣM).

∇
д
XΦ = a X · Φ + X y Ξ (5)

I Brie�y appeared in physics in the context of supergravity.
I Tensor products of a Killing spinor and a Killing form.
I The prolongation is similar to the scalar-valued case, just

with additional curvature terms on the spinor part.

Special Killing spinor-valued forms

∇
д
XΦ = a X · Φ + X y Ξ, ∇

д
XΞ = a X · Ξ − c X [ ∧ Φ (6)

I Does not imply Einstein in general.
I Cone construction again works, but only if c = 4a2 .

Q: Can we deduce c = 4a2 for compact manifolds by clever use
of integrability conditions and Stokes theorem?



Cone construction
The ε-metric cone over a (pseudo-) Riemannian manifold (M,д)
is the warped product M = M × R+ with metric

дε = r
2π ∗1 (д) + ε dr

2, (7)

where r is the coordinate function on R+ and ε = ±1.

Analogously to the cases of spinors (Bär 1993, Bohle 2003) and
scalar-valued forms (Semmelmann 2003), we have:
Proposition (Somberg, Zima 2016)
A spinor-valued p-form Φ onM is special Killing with constants
a = ±1

2
√
ε and c = ε if and only if the (p + 1)-form Θ±,

Θ± = (1 ∓
√
ε∂r ) · (r

pdr ∧ π ∗1 (Φ) + r
p+1π ∗1 (Ξ)) (8)

is parallel with respect to the Levi-Civita connection ∇дε onM .
⇒ Hol(M,дε) must �x the spinor-valued (p + 1)-form Θ±.



2nd order Killing spinors
≡ Spinor-valued special Killing 0-forms⇔ 2nd order equation:

(∇д)2X ,YΨ = −a
2X · Y · Ψ +

+ a (Y · (∇
д
XΨ) + X · (∇

д
YΨ)) − c д(X ,Y )Ψ

(9)

I 1st integrability condition: RдX ,YΨ = −a
2 [X ·,Y ·]Ψ

⇒ Again (M,д) is Einstein.
I Includes Killing spinors with Killing number a′ = −a .
I Spinorial analog of the equation from Obata’s theorem.

Classi�cation for compact Riemannian manifolds:
n Hol(M,д+) Structure on M Ψ

2m + 1 SU(m + 1) Sasakian X
4k + 3 Sp(k + 1) 3-Sasakian X

7 Spin(7) G2-structure X
6 G2 Nearly Kähler ?



Sasakian manifolds
Riemannian (M,д,φ, ξ ,η), n = 2m + 1, such that:
I almost contact: φ2 = − IdTM +η ⊗ ξ , η(ξ ) = 1

I normal: Nijenhuis torsion Nφ = [φ,φ] + dη ⊗ ξ = 0

I compatible metric: д(φ(X ),φ(Y )) = д(X ,Y ) − η(X )η(Y )

I contact: dη = 2Φ where Φ(X ,Y ) = д(X ,φ(Y ))

Equivalent de�nitions:
⇔ η is a special Killing 1-form with c = 1 and |η | = 1 .
⇔ The cone (M,д+) is Kähler.
Theorem (Friedrich, Kath 1990; Bär 2003)
LetM a complete simply connected Sasaki-Einstein manifold,
m ≥ 2, thenM carries 2 Killing spinors with a = ±1

2 .



3-Sasakian manifolds
Riemannian (M,д,φi, ξi,ηi), n = 4k + 3, i = 1, 2, 3, such that
each (φi, ξi,ηi) is a Sasakian structure and

φk = φiφj − ηj ⊗ ξi = −φjφi + ηi ⊗ ξj,

ξk = φiξj = −φjξi, ηk = ηiϕj = −ηjφi .

⇔ The cone (M,д+) is hyper-Kähler.
⇒ Always Einstein.
Theorem (Friedrich, Kath 1990; Bär 2003)
LetM a complete simply connected 3-Sasaki manifold, k ≥ 1,
thenM carries k + 2 Killing spinors with a = 1

2 .

In dimension 7 the 3 Killing spinors Ψi are given by

Ψi = ξi · Ψ0, i = 1, 2, 3, (10)

where Ψ0 is a so called canonical spinor.



3-(α, δ )-Sasakian manifolds
Split TM = V ⊕H to the vertical and horizontal distribution,

V = 〈ξ1, ξ2, ξ3〉, H = kerη1 ∩ kerη2 ∩ kerη3.

Rescale д on V and H 2-parameter family of metrics дα,δ
 3-(α, δ )-Sasakian manifolds with αδ > 0
Proposition (Agricola, Dileo 2019)
(M,дα,δ ) is Einstein if and only if δ = α or δ = (2k + 3)α .
In dimension 7:

δ = α д = д1,1 the original 3-Sasakian structure
δ = 5α д̃ = д1,5 canonical cocalibrated G2-structure

G2-structure on (M, д̃), canonical connection ∇̃c with torsion
 distinguished parallel spinor �eld Ψ0,

∇̃cXΨ0 = 0. (11)

De�nes the canonical spinor of (M,д).



Canonical spinor in dimension 7

Theorem (Agricola, Friedrich 2010)
The canonical spinor Ψ0 is a generalized Killing spinor,

∇
д
ξ
Ψ0 =

1
2 ξ · Ψ0, ξ ∈ V,

∇
д
YΨ0 = −

3
2 Y · Ψ0, Y ∈ H.

(12)

Theorem (Zima (unpublished))
The canonical spinor Ψ0 is also a 2nd order Killing spinor with
constants a = −1

2 and c = 1 which is not a Killing spinor.

I Invariant description of the canonical spinor Ψ0.
I Discovered on the Alo�-Wallach space N (1, 1) using CAS

and subsequently identi�ed with Ψ0.
I WIP: Describe the solution Ψ0 in general for n = 4k + 3

directly as an invariant of Hol(M,д+) = Sp(k + 1).



Higher order generalizations
I The spinor-valued skew-symmetric forms are not suitable

for higher order generalization, we need to consider
symmetric (covariant) tensor-spinors of rank p ≥ 2.

I In order to deduce the appropriate PDE we can start from
the cone construction.

Let Θ ∈ Γ(Symp(T∗M) ⊗ ΣM) be parallel with respect to∇дε .
 Project to (p + 1)th order Killing spinor Ψ± on (M,д),

Ψ± = (π1)∗

(
1
2 (1 ±

√
ε∂r ) · Θ(∂r , . . . , ∂r )

)
. (13)

I The prolongation in case of symmetric p-tensors has p + 1
components and is combinatorially involved.

I Alternatively we can start from the �rst BGG operator on
projective symmetric covariant tractors of rank p ≥ 2.
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