Generalizations of Killing spinors

Petr Zima (joint with P. Somberg and I. Agricola)

Dirac Operators in Differential Geometry and Global analysis 16–20 September, 2019 (M,g) a (pseudo-) Riemannian spin manifold of dimension n, ∇^g the Levi-Civita and the induced spin connection

Killing spinors

Let $\Psi \in \Gamma(\Sigma M)$, where ΣM is the complex spinor bundle.

$$\nabla_X^g \Psi = a X \cdot \Psi \tag{1}$$

- ► *Killing number a* \in \mathbb{C} , either real or purely imaginary
- ▶ 1st integrability condition: $\mathcal{R}_{X,Y}^g \Psi = -a^2 [X \cdot, Y \cdot] \Psi$ ⇒ (M, q) is **Einstein** with $\operatorname{Scal}^g = 4 a^2 n(n-1)$.
- Ψ is an eigenvector of the *Dirac operator*: $\lambda_0 = -na$
- \triangleright λ_0 is extremal in the sense of Friedrich's inequality:

$$\lambda^2 \geq \lambda_0^2 = \frac{n}{4(n-1)} \operatorname{Scal}^g$$

Cone construction ⇒ Holonomy classification for compact Riemannian manifolds via Berger's list

Generalized Killing spinors

$$\nabla_X^g \Psi = S(X) \cdot \Psi \tag{2}$$

where S(X) is a section of symmetric endomorphisms of TM.

ightharpoonup Originally discovered as the restriction of a parallel spinor to a hypersurface. In this case, S(X) is the *shape operator*.

Special cases by imposing restrictions on S(X):

► *T-Killing spinors* \equiv tr(*S*) is constant

We are mostly interested in the case when the eigenvalues are constant. The corresponding eigendistributions typically come from an additional special Riemannian structure.

SU(2)-structures (n = 5), SU(3)-structures (n = 6), G₂-structures (n = 7), Sasakian and 3-Sasakian structures

From this point of view, the equation is **not invariant** with respect to the spin (pseudo-) Riemannian structure alone.

Killing(-Yano) forms

Let $\eta \in \Omega^p(M)$ and $\varphi \in \Omega^{p+1}(M)$.

$$\nabla_X^g \eta = X \, \lrcorner \, \varphi \tag{3}$$

- ▶ *Projectively invariant* when appropriately weighted.
- ▶ Prolongation: $\bigwedge^{p+1} \mathbb{T}^* \cong \bigwedge^p \mathbb{T}^* M \oplus \bigwedge^{p+1} \mathbb{T}^* M$ with the tractor connection modified by the Weyl tensor

Special Killing forms

$$\nabla_X^g \eta = X \, \lrcorner \, \varphi, \qquad \qquad \nabla_X^g \varphi = -c \, X^\flat \wedge \eta \tag{4}$$

- ▶ A prominent example are Sasakian structures.
- **▶** Cone construction ⇒ Holonomy classification
- ▶ We have Scal = c n(n-1) for compact manifolds.

Q: Can we deduce Scal = c n(n - 1) for compact manifolds directly without going through the classification?

Killing spinor-valued forms

Let $\Phi \in \Omega^p(M, \Sigma M)$ and $\Xi \in \Omega^{p+1}(M, \Sigma M)$.

$$\nabla_X^g \Phi = a \, X \cdot \Phi + X \, \lrcorner \, \Xi \tag{5}$$

- Briefly appeared in physics in the context of supergravity.
- ► Tensor products of a Killing spinor and a Killing form.
- ► The prolongation is similar to the scalar-valued case, just with additional curvature terms on the spinor part.

Special Killing spinor-valued forms

$$\nabla_X^g \Phi = a X \cdot \Phi + X \perp \Xi, \quad \nabla_X^g \Xi = a X \cdot \Xi - c X^{\flat} \wedge \Phi \quad (6)$$

- ▶ Does not imply Einstein in general.
- **Cone construction** again works, but only if $c = 4a^2$.

Q: Can we deduce $c = 4a^2$ for compact manifolds by clever use of integrability conditions and Stokes theorem?

Cone construction

The ε -metric cone over a (pseudo-) Riemannian manifold (M, g) is the warped product $\overline{M} = M \times \mathbb{R}_+$ with metric

$$\overline{g}_{\varepsilon} = r^2 \pi_1^*(g) + \varepsilon \, \mathrm{d}r^2, \tag{7}$$

where *r* is the coordinate function on \mathbb{R}_+ and $\varepsilon = \pm 1$.

Analogously to the cases of spinors (Bär 1993, Bohle 2003) and scalar-valued forms (Semmelmann 2003), we have:

Proposition (Somberg, Zima 2016)

A spinor-valued p-form Φ on M is special Killing with constants $a = \pm \frac{1}{2} \sqrt{\varepsilon}$ and $c = \varepsilon$ if and only if the (p + 1)-form Θ_{\pm} ,

$$\Theta_{\pm} = (1 \mp \sqrt{\varepsilon} \partial_r) \cdot (r^p dr \wedge \pi_1^*(\Phi) + r^{p+1} \pi_1^*(\Xi))$$
 (8)

is parallel with respect to the Levi-Civita connection $\overline{\nabla}^{g_{\varepsilon}}$ on \overline{M} . $\Rightarrow \operatorname{Hol}(\overline{M}, \overline{g}_{\varepsilon})$ must fix the spinor-valued (p+1)-form Θ_{\pm} .

2nd order Killing spinors

 \equiv Spinor-valued special Killing 0-forms \Leftrightarrow 2nd order equation:

$$(\nabla^g)_{X,Y}^2 \Psi = -a^2 X \cdot Y \cdot \Psi + + a \left(Y \cdot (\nabla_X^g \Psi) + X \cdot (\nabla_Y^g \Psi) \right) - c g(X, Y) \Psi$$
(9)

- ► 1st integrability condition: $\mathcal{R}_{X,Y}^g \Psi = -a^2 [X \cdot, Y \cdot] \Psi$ ⇒ Again (M, g) is **Einstein**.
- ► Includes Killing spinors with Killing number a' = -a.
- ▶ Spinorial analog of the equation from Obata's theorem.

Classification for compact Riemannian manifolds:

n	$\operatorname{Hol}(\overline{M}, \overline{g}_+)$	Structure on M	Ψ
2m + 1	SU(m+1)	Sasakian	X
4k + 3	$\operatorname{Sp}(k+1)$	3-Sasakian	✓
7	Spin(7)	G ₂ -structure	X
6	G_2	Nearly Kähler	?

Sasakian manifolds

Riemannian $(M, q, \varphi, \xi, \eta)$, n = 2m + 1, such that:

- almost contact: $\varphi^2 = -\operatorname{Id}_{TM} + \eta \otimes \xi$, $\eta(\xi) = 1$
- ► *normal:* Nijenhuis torsion $N_{\varphi} = [\varphi, \varphi] + d\eta \otimes \xi = 0$
- compatible metric: $g(\varphi(X), \varphi(Y)) = g(X, Y) \eta(X)\eta(Y)$
- contact: $d\eta = 2\Phi$ where $\Phi(X, Y) = g(X, \varphi(Y))$

Equivalent definitions:

$$\Leftrightarrow \eta$$
 is a **special Killing 1-form** with $c = 1$ and $|\eta| = 1$.

 \Leftrightarrow The cone $(\overline{M}, \overline{g}_+)$ is Kähler.

Theorem (Friedrich, Kath 1990; Bär 2003)

Let M a complete simply connected Sasaki-Einstein manifold, $m \ge 2$, then M carries 2 Killing spinors with $a = \pm \frac{1}{2}$.

3-Sasakian manifolds

Riemannian $(M, g, \varphi_i, \xi_i, \eta_i)$, n = 4k + 3, i = 1, 2, 3, such that each $(\varphi_i, \xi_i, \eta_i)$ is a Sasakian structure and

$$\varphi_k = \varphi_i \varphi_j - \eta_j \otimes \xi_i = -\varphi_j \varphi_i + \eta_i \otimes \xi_j,$$

$$\xi_k = \varphi_i \xi_j = -\varphi_j \xi_i, \qquad \eta_k = \eta_i \phi_j = -\eta_j \varphi_i.$$

 \Leftrightarrow The cone $(\overline{M}, \overline{q}_+)$ is hyper-Kähler.

 \Rightarrow Always **Einstein**.

Theorem (Friedrich, Kath 1990; Bär 2003)

Let M a complete simply connected 3-Sasaki manifold, $k \ge 1$, then M carries k + 2 Killing spinors with $a = \frac{1}{2}$.

In dimension 7 the 3 Killing spinors Ψ_i are given by

$$\Psi_i = \xi_i \cdot \Psi_0, \qquad i = 1, 2, 3,$$
 (10)

where Ψ_0 is a so called **canonical spinor**.

$3-(\alpha,\delta)$ -Sasakian manifolds

Split $TM = \mathcal{V} \oplus \mathcal{H}$ to the *vertical* and *horizontal distribution*,

$$\mathcal{V} = \langle \xi_1, \xi_2, \xi_3 \rangle, \qquad \mathcal{H} = \ker \eta_1 \cap \ker \eta_2 \cap \ker \eta_3.$$

Rescale g on V and $\mathcal{H} \rightsquigarrow$ 2-parameter family of metrics $g_{\alpha,\delta} \rightsquigarrow 3-(\alpha,\delta)$ -Sasakian manifolds with $\alpha\delta > 0$

Proposition (Agricola, Dileo 2019)

 $(M, g_{\alpha,\delta})$ is Einstein if and only if $\delta = \alpha$ or $\delta = (2k + 3) \alpha$.

In dimension 7:

$$\delta = \alpha$$
 $g = g_{1,1}$ the original 3-Sasakian structure $\delta = 5\alpha$ $\widetilde{g} = g_{1,5}$ canonical cocalibrated G_2 -structure

G₂-structure on (M, \widetilde{g}) , canonical connection $\widetilde{\nabla}^c$ with torsion \rightsquigarrow distinguished parallel spinor field Ψ_0 ,

$$\widetilde{\nabla^c}_X \Psi_0 = 0. \tag{11}$$

Defines the **canonical spinor** of (M, g).

Canonical spinor in dimension 7

Theorem (Agricola, Friedrich 2010)

The canonical spinor Ψ_0 is a generalized Killing spinor,

$$\nabla_{\xi}^{g} \Psi_{0} = \frac{1}{2} \xi \cdot \Psi_{0}, \qquad \qquad \xi \in \mathcal{V},
\nabla_{Y}^{g} \Psi_{0} = -\frac{3}{2} Y \cdot \Psi_{0}, \qquad \qquad Y \in \mathcal{H}.$$
(12)

Theorem (Zima (unpublished))

The canonical spinor Ψ_0 is also a 2^{nd} order Killing spinor with constants $a = -\frac{1}{2}$ and c = 1 which is not a Killing spinor.

- ▶ Invariant description of the canonical spinor Ψ_0 .
- ▶ Discovered on the *Aloff-Wallach space* N(1, 1) using CAS and subsequently identified with Ψ_0 .
- ► WIP: Describe the solution Ψ₀ in general for n = 4k + 3 directly as an invariant of Hol $(\overline{M}, \overline{g}_+)$ = Sp(k + 1).

Higher order generalizations

- ► The spinor-valued skew-symmetric forms are not suitable for higher order generalization, we need to consider **symmetric** (covariant) tensor-spinors of rank $p \ge 2$.
- ▶ In order to deduce the appropriate PDE we can start from the cone construction.

Let
$$\Theta \in \Gamma(\operatorname{Sym}^p(\operatorname{T}^*\overline{M}) \otimes \Sigma \overline{M})$$
 be $parallel$ with respect to $\overline{\nabla^{g_{\varepsilon}}}$.

 \rightsquigarrow Project to $(p + 1)^{th}$ order Killing spinor Ψ_{\pm} on (M, g),

$$\Psi_{\pm} = (\pi_1)_* \Big(\frac{1}{2} (1 \pm \sqrt{\varepsilon} \partial_r) \cdot \Theta(\partial_r, \dots, \partial_r) \Big). \tag{13}$$

- ▶ The prolongation in case of symmetric p-tensors has p + 1 components and is combinatorially involved.
- ▶ Alternatively we can start from the first BGG operator on projective symmetric covariant tractors of rank $p \ge 2$.

References

Agricola, I., Dileo, G. Generalizations of 3-Sasakian manifolds and skew torsion. *Adv. Geom.* (2019), https://doi.org/10.1515/advgeom-2018-0036.

Agricola, I., Friedrich, T. 3-Sasakian manifolds in dimension seven, their spinors and G_2 -structures. J. Geom. Phys. **60** (2010), no. 2, 326–332.

Bär, C. Real Killing spinors and holonomy. Comm. Math. Phys. 154 (1993), no. 3, 509-521.

Friedrich, T., Kath, I. 7-dimensional compact Riemannian manifolds with Killing spinors. *Comm. Math. Phys.* **133** (1990), no. 3, 543–561.

Semmelmann, U. Conformal Killing forms on Riemannian manifolds. *Math. Z.* **245** (2003), no. 3, 503–527.

Somberg, P., Zima, P. Killing spinor-valued forms and the cone construction. *Arch. Math. (Brno)* **52** (2016), no. 5, 341–355.

THANK YOU FOR YOUR ATTENTION!