Miscellaneous on Almost Complex Manifolds

Oliver Goertsches
Philipps-Universität Marburg

Dirac operators in differential geometry and global analysis In memory of Thomas Friedrich

October 10, 2019

Almost complex structures

An almost complex structure on a (compact, connected) manifold M is an endomorphism $J: T M \rightarrow T M$ with $J^{2}=-$ id.

Almost complex structures

An almost complex structure on a (compact, connected) manifold M is an endomorphism $J: T M \rightarrow T M$ with $J^{2}=-$ id.

There are many open questions concerning the integrability of almost complex structures, e.g.:

Almost complex structures

An almost complex structure on a (compact, connected) manifold M is an endomorphism $J: T M \rightarrow T M$ with $J^{2}=-$ id.

There are many open questions concerning the integrability of almost complex structures, e.g.:
(1) Van de Ven (1966) gave many examples of almost complex 4-manifolds not admitting any complex structure.

Almost complex structures

An almost complex structure on a (compact, connected) manifold M is an endomorphism $J: T M \rightarrow T M$ with $J^{2}=-$ id.

There are many open questions concerning the integrability of almost complex structures, e.g.:
(1) Van de Ven (1966) gave many examples of almost complex 4-manifolds not admitting any complex structure. (consider $r \mathbb{C} P^{2} \# s \overline{\mathbb{C}} P^{2} \# t\left(\Sigma_{2} \times S^{2}\right)$ for certain r, s, t.)

Almost complex structures

An almost complex structure on a (compact, connected) manifold M is an endomorphism $J: T M \rightarrow T M$ with $J^{2}=-$ id.

There are many open questions concerning the integrability of almost complex structures, e.g.:
(1) Van de Ven (1966) gave many examples of almost complex 4-manifolds not admitting any complex structure. (consider $r \mathbb{C} P^{2} \# s \overline{\mathbb{C} P^{2}} \# t\left(\Sigma_{2} \times S^{2}\right)$ for certain r, s, t.) No such example known in higher dimensions!

Almost complex structures

An almost complex structure on a (compact, connected) manifold M is an endomorphism $J: T M \rightarrow T M$ with $J^{2}=-$ id.

There are many open questions concerning the integrability of almost complex structures, e.g.:
(1) Van de Ven (1966) gave many examples of almost complex 4-manifolds not admitting any complex structure. (consider $r \mathbb{C} P^{2} \# s \overline{\mathbb{C}} P^{2} \# t\left(\Sigma_{2} \times S^{2}\right)$ for certain r, s, t.) No such example known in higher dimensions!
(2) The Hopf Problem (1948): does S^{6} admit a complex structure?

Almost complex structures

An almost complex structure on a (compact, connected) manifold M is an endomorphism $J: T M \rightarrow T M$ with $J^{2}=-$ id.

There are many open questions concerning the integrability of almost complex structures, e.g.:
(1) Van de Ven (1966) gave many examples of almost complex 4-manifolds not admitting any complex structure. (consider $r \mathbb{C} P^{2} \# s \overline{\mathbb{C}} P^{2} \# t\left(\Sigma_{2} \times S^{2}\right)$ for certain r, s, t.) No such example known in higher dimensions!
(2) The Hopf Problem (1948): does S^{6} admit a complex structure?

This is not what this talk is about.

Low dimensions

Dimension 2: Any oriented 2-manifold admits an almost complex structure.

Low dimensions

Dimension 2: Any oriented 2-manifold admits an almost complex structure.

Dimension 4: $W u$ (1952): An oriented 4-manifold M admits an almost complex structure if and only if there exists $c \in H^{2}(M ; \mathbb{Z})$ such that

$$
c \equiv w_{2}(M) \quad \bmod 2 \quad \text { and } \quad c^{2}=3 \sigma(M)+2 \chi(M)
$$

Low dimensions

Dimension 2: Any oriented 2-manifold admits an almost complex structure.

Dimension 4: $W u$ (1952): An oriented 4-manifold M admits an almost complex structure if and only if there exists $c \in H^{2}(M ; \mathbb{Z})$ such that

$$
c \equiv w_{2}(M) \quad \bmod 2 \quad \text { and } \quad c^{2}=3 \sigma(M)+2 \chi(M)
$$

An acs on $M^{2 n}$ is a section in an $\mathrm{SO}(2 n) / \mathrm{U}(n)$-bundle, so the obstructions lie in $H^{*}\left(M ; \pi_{*-1}(\mathrm{SO}(2 n) / \mathrm{U}(n))\right)$.

Low dimensions

Dimension 2: Any oriented 2-manifold admits an almost complex structure.

Dimension 4: $W u$ (1952): An oriented 4-manifold M admits an almost complex structure if and only if there exists $c \in H^{2}(M ; \mathbb{Z})$ such that

$$
c \equiv w_{2}(M) \quad \bmod 2 \quad \text { and } \quad c^{2}=3 \sigma(M)+2 \chi(M)
$$

An acs on $M^{2 n}$ is a section in an $\mathrm{SO}(2 n) / \mathrm{U}(n)$-bundle, so the obstructions lie in $H^{*}\left(M ; \pi_{*-1}(\mathrm{SO}(2 n) / \mathrm{U}(n))\right)$.

For $n=2: \mathrm{SO}(4) / \mathrm{U}(2) \cong S^{2}$, so we have obstructions in $H^{3}\left(M ; \pi_{2}\left(S^{2}\right)\right)=H^{3}(M ; \mathbb{Z})$ and $H^{4}\left(M ; \pi_{3}\left(S^{2}\right)\right)=H^{4}(M ; \mathbb{Z})$.

Low dimensions

Dimension 6: Ehresmann (1952): Even simpler: we have $\mathrm{SO}(6) / \mathrm{U}(3) \cong \mathbb{C} P^{3}$, so the only obstruction lies in $H^{3}\left(M ; \pi_{2}\left(\mathbb{C} P^{3}\right)\right)=H^{3}(M ; \mathbb{Z})$, which is again the third integral Stiefel-Whitney class W_{3}.

Low dimensions

Dimension 6: Ehresmann (1952): Even simpler: we have $\mathrm{SO}(6) / \mathrm{U}(3) \cong \mathbb{C} P^{3}$, so the only obstruction lies in $H^{3}\left(M ; \pi_{2}\left(\mathbb{C} P^{3}\right)\right)=H^{3}(M ; \mathbb{Z})$, which is again the third integral Stiefel-Whitney class W_{3}.

Dimension 8: Müller-Geiges (2000): There exists an acs on M if and only if

- $W_{3}=0$,
- $\chi(M) \equiv \sigma(M) \bmod 4$,
- If there exists a torsion element $c \in H^{2}(M, \mathbb{Z})$ with $c \equiv \omega_{2}(M) \bmod 2$, then $\chi(M) \equiv 0 \bmod 2$, and
- If $b_{2}(M)=0$, then $8 \chi(M)-4 p_{2}(M)+p_{1}^{2}(M)=0$.

Hirzebruch's obstruction

Hirzebruch: If $M^{4 n}$ admits an almost complex structure, then

$$
\chi(M) \equiv(-1)^{n} \sigma(M) \quad \bmod 4
$$

Hirzebruch's obstruction

Hirzebruch: If $M^{4 n}$ admits an almost complex structure, then

$$
\chi(M) \equiv(-1)^{n} \sigma(M) \quad \bmod 4
$$

In particular: if M and N admit almost complex structures, then $M \# N$ does not!

Hirzebruch's obstruction

Hirzebruch: If $M^{4 n}$ admits an almost complex structure, then

$$
\chi(M) \equiv(-1)^{n} \sigma(M) \quad \bmod 4
$$

In particular: if M and N admit almost complex structures, then $M \# N$ does not!

$$
\chi(M \# N)=\chi(M)+\chi(N)-2, \quad \sigma(M \# N)=\sigma(M)+\sigma(N)
$$

Hirzebruch's obstruction

Hirzebruch: If $M^{4 n}$ admits an almost complex structure, then

$$
\chi(M) \equiv(-1)^{n} \sigma(M) \quad \bmod 4
$$

In particular: if M and N admit almost complex structures, then $M \# N$ does not!

$$
\chi(M \# N)=\chi(M)+\chi(N)-2, \quad \sigma(M \# N)=\sigma(M)+\sigma(N)
$$

- $k \mathbb{C} P^{2 n}$ is not almost complex for k even.

Hirzebruch's obstruction

Hirzebruch: If $M^{4 n}$ admits an almost complex structure, then

$$
\chi(M) \equiv(-1)^{n} \sigma(M) \quad \bmod 4
$$

In particular: if M and N admit almost complex structures, then $M \# N$ does not!

$$
\chi(M \# N)=\chi(M)+\chi(N)-2, \quad \sigma(M \# N)=\sigma(M)+\sigma(N)
$$

- $k \mathbb{C} P^{2 n}$ is not almost complex for k even.
- $\mathbb{C} P^{2 n} \# \overline{\mathbb{C}} P^{2 n}$

Hirzebruch's obstruction

Hirzebruch: If $M^{4 n}$ admits an almost complex structure, then

$$
\chi(M) \equiv(-1)^{n} \sigma(M) \quad \bmod 4
$$

In particular: if M and N admit almost complex structures, then $M \# N$ does not!

$$
\chi(M \# N)=\chi(M)+\chi(N)-2, \quad \sigma(M \# N)=\sigma(M)+\sigma(N)
$$

- $k \mathbb{C} P^{2 n}$ is not almost complex for k even.
- $\mathbb{C} P^{2 n} \# \overline{\mathbb{C} P^{2 n}}$, the blow-up of $\mathbb{C} P^{2 n}$, is Kähler.

Hirzebruch's obstruction

Hirzebruch: If $M^{4 n}$ admits an almost complex structure, then

$$
\chi(M) \equiv(-1)^{n} \sigma(M) \quad \bmod 4
$$

In particular: if M and N admit almost complex structures, then $M \# N$ does not!

$$
\chi(M \# N)=\chi(M)+\chi(N)-2, \quad \sigma(M \# N)=\sigma(M)+\sigma(N)
$$

- $k \mathbb{C} P^{2 n}$ is not almost complex for k even.
- $\mathbb{C} P^{2 n} \# \overline{\mathbb{C} P^{2 n}}$, the blow-up of $\mathbb{C} P^{2 n}$, is Kähler.
- $k \mathbb{C} P^{2 n+1}$

Hirzebruch's obstruction

Hirzebruch: If $M^{4 n}$ admits an almost complex structure, then

$$
\chi(M) \equiv(-1)^{n} \sigma(M) \quad \bmod 4
$$

In particular: if M and N admit almost complex structures, then $M \# N$ does not!

$$
\chi(M \# N)=\chi(M)+\chi(N)-2, \quad \sigma(M \# N)=\sigma(M)+\sigma(N)
$$

- $k \mathbb{C} P^{2 n}$ is not almost complex for k even.
- $\mathbb{C} P^{2 n} \# \overline{\mathbb{C} P^{2 n}}$, the blow-up of $\mathbb{C} P^{2 n}$, is Kähler.
- $k \mathbb{C} P^{2 n+1}$ is Kähler, because $\mathbb{C} P^{2 n+1}$ admits an orientation-reversing diffeomorphism.

Hirzebruch's obstruction

Hirzebruch: If $M^{4 n}$ admits an almost complex structure, then

$$
\chi(M) \equiv(-1)^{n} \sigma(M) \quad \bmod 4
$$

In particular: if M and N admit almost complex structures, then $M \# N$ does not!

$$
\chi(M \# N)=\chi(M)+\chi(N)-2, \quad \sigma(M \# N)=\sigma(M)+\sigma(N)
$$

- $k \mathbb{C} P^{2 n}$ is not almost complex for k even.
- $\mathbb{C} P^{2 n} \# \overline{\mathbb{C} P^{2 n}}$, the blow-up of $\mathbb{C} P^{2 n}$, is Kähler.
- $k \mathbb{C} P^{2 n+1}$ is Kähler, because $\mathbb{C} P^{2 n+1}$ admits an orientation-reversing diffeomorphism.
- $k \mathbb{C} P^{2}$ and $k \mathbb{C} P^{4}$ are almost complex if and only if k is odd.

Connected sums

Theorem (—, Konstantis; 2017)
 $k \mathbb{C} P^{2 n}$ is almost complex if and only if k is odd.

Connected sums

Theorem (—, Konstantis; 2017)

$k \mathbb{C} P^{2 n}$ is almost complex if and only if k is odd.
(1) $T(M \# N) \oplus \varepsilon^{4 n} \cong p_{M}^{*}(T M) \oplus p_{N}^{*}(T N)$: The connected sum of stably almost complex manifolds is stably almost complex.

Connected sums

Theorem (—, Konstantis; 2017)

$k \mathbb{C} P^{2 n}$ is almost complex if and only if k is odd.
(1) $T(M \# N) \oplus \varepsilon^{4 n} \cong p_{M}^{*}(T M) \oplus p_{N}^{*}(T N)$: The connected sum of stably almost complex manifolds is stably almost complex.
(2) Compute the kernel of $K\left(k \mathbb{C} P^{2 n}\right) \longrightarrow K O\left(k \mathbb{C} P^{2 n}\right)$.

Connected sums

Theorem (-, Konstantis; 2017)
$k \mathbb{C} P^{2 n}$ is almost complex if and only if k is odd.
(1) $T(M \# N) \oplus \varepsilon^{4 n} \cong p_{M}^{*}(T M) \oplus p_{N}^{*}(T N)$: The connected sum of stably almost complex manifolds is stably almost complex.
(2) Compute the kernel of $K\left(k \mathbb{C} P^{2 n}\right) \longrightarrow K O\left(k \mathbb{C} P^{2 n}\right)$.
(3) Identify the stable almost complex structures in $K\left(k \mathbb{C} P^{2 n}\right)$.

Connected sums

Theorem (—, Konstantis; 2017)

$k \mathbb{C} P^{2 n}$ is almost complex if and only if k is odd.
(1) $T(M \# N) \oplus \varepsilon^{4 n} \cong p_{M}^{*}(T M) \oplus p_{N}^{*}(T N)$: The connected sum of stably almost complex manifolds is stably almost complex.
(2) Compute the kernel of $K\left(k \mathbb{C} P^{2 n}\right) \longrightarrow K O\left(k \mathbb{C} P^{2 n}\right)$.
(3) Identify the stable almost complex structures in $K\left(k \mathbb{C} P^{2 n}\right)$.
(9) Use result of Sutherland/Thomas (1965/67): A closed $2 d$-dimensional manifold M admits an almost complex structure if and only if it admits a stable almost complex structure whose d-th Chern class equals the Euler class of M.

Connected sums

More on connected sums

This result was generalized by Yang:

Theorem (Yang; 2018)

For almost complex $4 n$-dimensional almost complex manifolds M_{1}, \ldots, M_{k}, the connected sum $\left(\#_{i=1}^{k} M_{i}\right) \#(k-1) \mathbb{C} P^{2 n}$ is almost complex.

More on connected sums

This result was generalized by Yang:

Theorem (Yang; 2018)

For almost complex $4 n$-dimensional almost complex manifolds M_{1}, \ldots, M_{k}, the connected sum $\left(\#_{i=1}^{k} M_{i}\right) \#(k-1) \mathbb{C} P^{2 n}$ is almost complex.

In particular, $(2 k-1) \mathbb{C} P^{2 n}$ is almost complex.

More on connected sums

This result was generalized by Yang:

Theorem (Yang; 2018)

For almost complex $4 n$-dimensional almost complex manifolds M_{1}, \ldots, M_{k}, the connected sum $\left(\#_{i=1}^{k} M_{i}\right) \#(k-1) \mathbb{C} P^{2 n}$ is almost complex.

In particular, $(2 k-1) \mathbb{C} P^{2 n}$ is almost complex.
The proof uses results of Kahn (1969) on the obstruction

$$
\mathfrak{o}(M, J) \in H^{4 n}\left(M, M \backslash D ; \pi_{4 n-1}(\mathrm{SO}(4 n) / \mathrm{U}(2 n))\right)
$$

to extend a given almost complex structure J on $M \backslash D$ to M. He shows that the obstruction vanishes for an explicit stable almost complex structure.

Even more on connected sums

Theorem (Albanese, Milivojević; 2019)

Given r closed almost complex manifolds of dimension n, their connected sum is automatically almost complex if and only if

- $n=4 m$, and $r=1$,
- $n=8 k+2$, and $r \equiv 1 \bmod (4 k)!$,
- $n=8 k+6$, and $r \equiv 1 \bmod \frac{1}{2}(4 k+2)$!.

Even more on connected sums

Theorem (Albanese, Milivojević; 2019)

Given r closed almost complex manifolds of dimension n, their connected sum is automatically almost complex if and only if

- $n=4 m$, and $r=1$,
- $n=8 k+2$, and $r \equiv 1 \bmod (4 k)!$,
- $n=8 k+6$, and $r \equiv 1 \bmod \frac{1}{2}(4 k+2)$!.

The natural stable almost complex structure \tilde{J} on $M=\#_{i=1}^{r} M_{i}$ restricts to an almost complex structure J on $M \backslash D$.

Even more on connected sums

Theorem (Albanese, Milivojević; 2019)

Given r closed almost complex manifolds of dimension n, their connected sum is automatically almost complex if and only if

- $n=4 m$, and $r=1$,
- $n=8 k+2$, and $r \equiv 1 \bmod (4 k)!$,
- $n=8 k+6$, and $r \equiv 1 \bmod \frac{1}{2}(4 k+2)$!.

The natural stable almost complex structure \tilde{J} on $M=\#_{i=1}^{r} M_{i}$ restricts to an almost complex structure J on $M \backslash D$. Then $\mathfrak{o}(M, J) \in H^{8 k+2}\left(M, M \backslash D ; \pi_{8 k+1}(\mathrm{SO}(8 k+2) / \mathrm{U}(4 k+2))\right) \cong \mathbb{Z}_{(4 k)!}$

Even more on connected sums

Theorem (Albanese, Milivojević; 2019)

Given r closed almost complex manifolds of dimension n, their connected sum is automatically almost complex if and only if

- $n=4 m$, and $r=1$,
- $n=8 k+2$, and $r \equiv 1 \bmod (4 k)!$,
- $n=8 k+6$, and $r \equiv 1 \bmod \frac{1}{2}(4 k+2)$!.

The natural stable almost complex structure \tilde{J} on $M=\#_{i=1}^{r} M_{i}$ restricts to an almost complex structure J on $M \backslash D$. Then $\mathfrak{o}(M, J) \in H^{8 k+2}\left(M, M \backslash D ; \pi_{8 k+1}(\mathrm{SO}(8 k+2) / \mathrm{U}(4 k+2))\right) \cong \mathbb{Z}_{(4 k)!}$
computes as

$$
\mathfrak{o}(M, J)=\frac{1}{2}\left(\chi(M)-c_{4 k+1}(\tilde{J})\right)=\frac{1}{2}\left(\chi(M)-\sum_{i=1}^{r} \chi\left(M_{i}\right)\right)=1-r .
$$

Even more on connected sums

Theorem (Albanese, Milivojević; 2019)

Given r closed almost complex manifolds of dimension n, their connected sum is automatically almost complex if and only if

- $n=4 m$, and $r=1$,
- $n=8 k+2$, and $r \equiv 1 \bmod (4 k)!$,
- $n=8 k+6$, and $r \equiv 1 \bmod \frac{1}{2}(4 k+2)$!.

Even more on connected sums

Theorem (Albanese, Milivojević; 2019)

Given r closed almost complex manifolds of dimension n, their connected sum is automatically almost complex if and only if

- $n=4 m$, and $r=1$,
- $n=8 k+2$, and $r \equiv 1 \bmod (4 k)!$,
- $n=8 k+6$, and $r \equiv 1 \bmod \frac{1}{2}(4 k+2)$!.
- $n=4 m$: For $r \geq 2$ the connected sum $\#_{i=1}^{r}\left(S^{1} \times S^{4 m-1}\right)$ is not almost complex.

Even more on connected sums

Theorem (Albanese, Milivojević; 2019)

Given r closed almost complex manifolds of dimension n, their connected sum is automatically almost complex if and only if

- $n=4 m$, and $r=1$,
- $n=8 k+2$, and $r \equiv 1 \bmod (4 k)!$,
- $n=8 k+6$, and $r \equiv 1 \bmod \frac{1}{2}(4 k+2)$!.
- $n=4 m$: For $r \geq 2$ the connected sum $\#_{i=1}^{r}\left(S^{1} \times S^{4 m-1}\right)$ is not almost complex.
- $n=8 k+2$: (Yang) $\#_{i=1}^{r}\left(S^{4 k+1} \times S^{4 k+1}\right)$ admits an almost complex structure if and only if $r \equiv 1 \bmod (4 k)$!

Even more on connected sums

Theorem (Albanese, Milivojević; 2019)

Given r closed almost complex manifolds of dimension n, their connected sum is automatically almost complex if and only if

- $n=4 m$, and $r=1$,
- $n=8 k+2$, and $r \equiv 1 \bmod (4 k)!$,
- $n=8 k+6$, and $r \equiv 1 \bmod \frac{1}{2}(4 k+2)$!.
- $n=4 m$: For $r \geq 2$ the connected sum $\#_{i=1}^{r}\left(S^{1} \times S^{4 m-1}\right)$ is not almost complex.
- $n=8 k+2$: (Yang) $\#_{i=1}^{r}\left(S^{4 k+1} \times S^{4 k+1}\right)$ admits an almost complex structure if and only if $r \equiv 1 \bmod (4 k)$!
- $n=8 k+6$: (Yang) $\#_{i=1}^{r}\left(S^{4 k+3} \times S^{4 k+3}\right)$ admits an almost complex structure if and only if $r \equiv 1 \bmod (4 k)$!

Even more on connected sums

More examples (Albanese, Milivojević): if M_{1}, \ldots, M_{r} are $(4 m+2)$-dimensional almost complex manifolds with $H^{2 j}\left(M_{i} ; \mathbb{Q}\right)=0$ for $j=1, \ldots, 2 m$, then $M=\#_{i=1}^{r} M_{i}$ can only admit an almost complex structure if $r \equiv 1 \bmod \frac{1}{2}(2 m)$!.

Even more on connected sums

More examples (Albanese, Milivojević): if M_{1}, \ldots, M_{r} are $(4 m+2)$-dimensional almost complex manifolds with $H^{2 j}\left(M_{i} ; \mathbb{Q}\right)=0$ for $j=1, \ldots, 2 m$, then $M=\#_{i=1}^{r} M_{i}$ can only admit an almost complex structure if $r \equiv 1 \bmod \frac{1}{2}(2 m)!$.

The almost complex structure on M_{i} induces a spin^{c} structure. Its spin^{c} Dirac operator $\partial_{M_{i}}^{c}$ has index

$$
\int_{M_{i}} \exp \left(c_{1}\left(T M_{i}\right) / 2\right) \operatorname{ch}\left(T M_{i}\right) \hat{A}\left(T M_{i}\right)=\frac{1}{(2 m)!} \chi\left(M_{i}\right) \in \mathbb{Z}
$$

If M is almost complex, then analogously

$$
\frac{1}{(2 m)!} \chi(M)=\frac{1}{(2 m)!}\left(\sum_{i=1}^{r} \chi\left(M_{i}\right)-2(r-1)\right) \in \mathbb{Z}
$$

Almost complex structures on (products of) spheres

- Borel-Serre (1953): The only spheres that admit almost complex structures are S^{2} and S^{6}.

Almost complex structures on (products of) spheres

- Borel-Serre (1953): The only spheres that admit almost complex structures are S^{2} and S^{6}.
- Calabi-Eckmann (1953): $S^{2 p+1} \times S^{2 q+1}$ admits an almost complex structure.

Almost complex structures on (products of) spheres

- Borel-Serre (1953): The only spheres that admit almost complex structures are S^{2} and S^{6}.
- Calabi-Eckmann (1953): $S^{2 p+1} \times S^{2 q+1}$ admits an almost complex structure.
- Calabi (1956): Any oriented hypersurface in \mathbb{R}^{7} admits an almost complex structure

Almost complex structures on (products of) spheres

- Borel-Serre (1953): The only spheres that admit almost complex structures are S^{2} and S^{6}.
- Calabi-Eckmann (1953): $S^{2 p+1} \times S^{2 q+1}$ admits an almost complex structure.
- Calabi (1956): Any oriented hypersurface in \mathbb{R}^{7} admits an almost complex structure, in particular $S^{2} \times S^{4}$.

Almost complex structures on (products of) spheres

- Borel-Serre (1953): The only spheres that admit almost complex structures are S^{2} and S^{6}.
- Calabi-Eckmann (1953): $S^{2 p+1} \times S^{2 q+1}$ admits an almost complex structure.
- Calabi (1956): Any oriented hypersurface in \mathbb{R}^{7} admits an almost complex structure, in particular $S^{2} \times S^{4}$.
- Datta-Subramanian (1990): The only products of two spheres that admit an almost complex structure are $S^{2} \times S^{2}, S^{6} \times S^{6}$, $S^{2} \times S^{6}$, and $S^{2} \times S^{4}$.

Almost complex structures on (products of) spheres

- Borel-Serre (1953): The only spheres that admit almost complex structures are S^{2} and S^{6}.
- Calabi-Eckmann (1953): $S^{2 p+1} \times S^{2 q+1}$ admits an almost complex structure.
- Calabi (1956): Any oriented hypersurface in \mathbb{R}^{7} admits an almost complex structure, in particular $S^{2} \times S^{4}$.
- Datta-Subramanian (1990): The only products of two spheres that admit an almost complex structure are $S^{2} \times S^{2}, S^{6} \times S^{6}$, $S^{2} \times S^{6}$, and $S^{2} \times S^{4}$.
- Albanese-Milivojević (2018/19): (Partial) generalization to rational homology spheres.

Almost complex structures on (products of) spheres

- Borel-Serre (1953): The only spheres that admit almost complex structures are S^{2} and S^{6}.
- Calabi-Eckmann (1953): $S^{2 p+1} \times S^{2 q+1}$ admits an almost complex structure.
- Calabi (1956): Any oriented hypersurface in \mathbb{R}^{7} admits an almost complex structure, in particular $S^{2} \times S^{4}$.
- Datta-Subramanian (1990): The only products of two spheres that admit an almost complex structure are $S^{2} \times S^{2}, S^{6} \times S^{6}$, $S^{2} \times S^{6}$, and $S^{2} \times S^{4}$.
- Albanese-Milivojević (2018/19): (Partial) generalization to rational homology spheres.
- Open for general products of rational homology spheres.

Almost complex structures on (products of) spheres

- Borel-Serre (1953): The only spheres that admit almost complex structures are S^{2} and S^{6}.
- Calabi-Eckmann (1953): $S^{2 p+1} \times S^{2 q+1}$ admits an almost complex structure.
- Calabi (1956): Any oriented hypersurface in \mathbb{R}^{7} admits an almost complex structure, in particular $S^{2} \times S^{4}$.
- Datta-Subramanian (1990): The only products of two spheres that admit an almost complex structure are $S^{2} \times S^{2}, S^{6} \times S^{6}$, $S^{2} \times S^{6}$, and $S^{2} \times S^{4}$.
- Albanese-Milivojević (2018/19): (Partial) generalization to rational homology spheres.
- Open for general products of rational homology spheres.
- Open for sphere bundles over spheres.

Biquotients

Much is known about almost complex structures on homogeneous spaces (e.g., Wolf-Gray (1968)).

Biquotients

Much is known about almost complex structures on homogeneous spaces (e.g., Wolf-Gray (1968)).

Biquotients: G compact Lie group, and $H \subset G \times G$ acting on G :

$$
\left(g_{1}, g_{2}\right) \cdot g:=g_{1} g g_{2}^{-1}
$$

If this action is free, then $G / / H$ is a manifold: a biquotient.

Biquotients

Much is known about almost complex structures on homogeneous spaces (e.g., Wolf-Gray (1968)).

Biquotients: G compact Lie group, and $H \subset G \times G$ acting on G :

$$
\left(g_{1}, g_{2}\right) \cdot g:=g_{1} g g_{2}^{-1}
$$

If this action is free, then $G / / H$ is a manifold: a biquotient.
Singhof (1993) showed that $G / / T$ always admits a stable almost complex structure, where T is a torus of rank rk G.

Biquotients

Much is known about almost complex structures on homogeneous spaces (e.g., Wolf-Gray (1968)).

Biquotients: G compact Lie group, and $H \subset G \times G$ acting on G :

$$
\left(g_{1}, g_{2}\right) \cdot g:=g_{1} g g_{2}^{-1}
$$

If this action is free, then $G / / H$ is a manifold: a biquotient.
Singhof (1993) showed that $G / / T$ always admits a stable almost complex structure, where T is a torus of rank rkG.

Open: When does $G / / H$ admit an almost complex structure?

Biquotients

Much is known about almost complex structures on homogeneous spaces (e.g., Wolf-Gray (1968)).

Biquotients: G compact Lie group, and $H \subset G \times G$ acting on G :

$$
\left(g_{1}, g_{2}\right) \cdot g:=g_{1} g g_{2}^{-1}
$$

If this action is free, then $G / / H$ is a manifold: a biquotient.
Singhof (1993) showed that $G / / T$ always admits a stable almost complex structure, where T is a torus of rank rk G.

Open: When does $G / / H$ admit an almost complex structure?
-, Konstantis, Zoller (2018): found several infinite families of symplectic, in particular almost complex, biquotients.

