Miscellaneous on Almost Complex Manifolds

Oliver Goertsches Philipps-Universität Marburg

Dirac operators in differential geometry and global analysis

In memory of Thomas Friedrich

October 10, 2019

An almost complex structure on a (compact, connected) manifold M is an endomorphism $J: TM \to TM$ with $J^2 = -\mathrm{id}$.

An almost complex structure on a (compact, connected) manifold M is an endomorphism $J: TM \to TM$ with $J^2 = -\mathrm{id}$.

There are many open questions concerning the integrability of almost complex structures, e.g.:

An almost complex structure on a (compact, connected) manifold M is an endomorphism $J:TM\to TM$ with $J^2=-\mathrm{id}$.

There are many open questions concerning the integrability of almost complex structures, e.g.:

• Van de Ven (1966) gave many examples of almost complex 4-manifolds not admitting any complex structure.

An almost complex structure on a (compact, connected) manifold M is an endomorphism $J: TM \to TM$ with $J^2 = -\mathrm{id}$.

There are many open questions concerning the integrability of almost complex structures, e.g.:

• Van de Ven (1966) gave many examples of almost complex 4-manifolds not admitting any complex structure. (consider $r\mathbb{C}P^2\#s\overline{\mathbb{C}P^2}\#t(\Sigma_2\times S^2)$ for certain r,s,t.)

An almost complex structure on a (compact, connected) manifold M is an endomorphism $J:TM\to TM$ with $J^2=-\mathrm{id}$.

There are many open questions concerning the integrability of almost complex structures, e.g.:

• Van de Ven (1966) gave many examples of almost complex 4-manifolds not admitting any complex structure. (consider $r\mathbb{C}P^2\#s\overline{\mathbb{C}P^2}\#t(\Sigma_2\times S^2)$ for certain r,s,t.) No such example known in higher dimensions!

An almost complex structure on a (compact, connected) manifold M is an endomorphism $J:TM\to TM$ with $J^2=-\mathrm{id}$.

There are many open questions concerning the integrability of almost complex structures, e.g.:

- Van de Ven (1966) gave many examples of almost complex 4-manifolds not admitting any complex structure. (consider $r\mathbb{C}P^2\#s\overline{\mathbb{C}P^2}\#t(\Sigma_2\times S^2)$ for certain r,s,t.) No such example known in higher dimensions!
- ② The Hopf Problem (1948): does S^6 admit a complex structure?

An almost complex structure on a (compact, connected) manifold M is an endomorphism $J: TM \to TM$ with $J^2 = -\mathrm{id}$.

There are many open questions concerning the integrability of almost complex structures, e.g.:

- Van de Ven (1966) gave many examples of almost complex 4-manifolds not admitting any complex structure. (consider $r\mathbb{C}P^2\#s\overline{\mathbb{C}P^2}\#t(\Sigma_2\times S^2)$ for certain r,s,t.) No such example known in higher dimensions!
- ② The Hopf Problem (1948): does S^6 admit a complex structure?

This is not what this talk is about.

Dimension 2: Any oriented 2-manifold admits an almost complex structure.

Dimension 2: Any oriented 2-manifold admits an almost complex structure.

Dimension 4: Wu (1952): An oriented 4-manifold M admits an almost complex structure if and only if there exists $c \in H^2(M; \mathbb{Z})$ such that

$$c \equiv w_2(M) \mod 2$$
 and $c^2 = 3\sigma(M) + 2\chi(M)$.

Dimension 2: Any oriented 2-manifold admits an almost complex structure.

Dimension 4: Wu (1952): An oriented 4-manifold M admits an almost complex structure if and only if there exists $c \in H^2(M; \mathbb{Z})$ such that

$$c \equiv w_2(M) \mod 2$$
 and $c^2 = 3\sigma(M) + 2\chi(M)$.

An acs on M^{2n} is a section in an SO(2n)/U(n)-bundle, so the obstructions lie in $H^*(M; \pi_{*-1}(SO(2n)/U(n)))$.

Dimension 2: Any oriented 2-manifold admits an almost complex structure.

Dimension 4: Wu (1952): An oriented 4-manifold M admits an almost complex structure if and only if there exists $c \in H^2(M; \mathbb{Z})$ such that

$$c \equiv w_2(M) \mod 2$$
 and $c^2 = 3\sigma(M) + 2\chi(M)$.

An acs on M^{2n} is a section in an SO(2n)/U(n)-bundle, so the obstructions lie in $H^*(M; \pi_{*-1}(SO(2n)/U(n)))$.

For n = 2: $SO(4)/U(2) \cong S^2$, so we have obstructions in $H^3(M; \pi_2(S^2)) = H^3(M; \mathbb{Z})$ and $H^4(M; \pi_3(S^2)) = H^4(M; \mathbb{Z})$.

Dimension 6: *Ehresmann* (1952): Even simpler: we have $SO(6)/U(3) \cong \mathbb{C}P^3$, so the only obstruction lies in $H^3(M; \pi_2(\mathbb{C}P^3)) = H^3(M; \mathbb{Z})$, which is again the third integral Stiefel-Whitney class W_3 .

Dimension 6: *Ehresmann* (1952): Even simpler: we have $SO(6)/U(3) \cong \mathbb{C}P^3$, so the only obstruction lies in $H^3(M; \pi_2(\mathbb{C}P^3)) = H^3(M; \mathbb{Z})$, which is again the third integral Stiefel-Whitney class W_3 .

Dimension 8: $M\ddot{u}ller-Geiges$ (2000): There exists an acs on M if and only if

- $W_3 = 0$,
- $\chi(M) \equiv \sigma(M) \mod 4$,
- If there exists a torsion element $c \in H^2(M, \mathbb{Z})$ with $c \equiv \omega_2(M) \mod 2$, then $\chi(M) \equiv 0 \mod 2$, and
- If $b_2(M) = 0$, then $8\chi(M) 4p_2(M) + p_1^2(M) = 0$.

Hirzebruch: If M^{4n} admits an almost complex structure, then

$$\chi(M) \equiv (-1)^n \sigma(M) \mod 4.$$

Hirzebruch: If M^{4n} admits an almost complex structure, then

$$\chi(M) \equiv (-1)^n \sigma(M) \mod 4.$$

Hirzebruch: If M^{4n} admits an almost complex structure, then

$$\chi(M) \equiv (-1)^n \sigma(M) \mod 4.$$

$$\chi(M\#N) = \chi(M) + \chi(N) - 2, \qquad \sigma(M\#N) = \sigma(M) + \sigma(N).$$

Hirzebruch: If M^{4n} admits an almost complex structure, then

$$\chi(M) \equiv (-1)^n \sigma(M) \mod 4.$$

In particular: if M and N admit almost complex structures, then M # N does not!

$$\chi(M\#N) = \chi(M) + \chi(N) - 2, \qquad \sigma(M\#N) = \sigma(M) + \sigma(N).$$

• $k\mathbb{C}P^{2n}$ is not almost complex for k even.

Hirzebruch: If M^{4n} admits an almost complex structure, then

$$\chi(M) \equiv (-1)^n \sigma(M) \mod 4.$$

$$\chi(M\#N) = \chi(M) + \chi(N) - 2, \qquad \sigma(M\#N) = \sigma(M) + \sigma(N).$$

- $k\mathbb{C}P^{2n}$ is not almost complex for k even.
- $\mathbb{C}P^{2n}\#\overline{\mathbb{C}P^{2n}}$

Hirzebruch: If M^{4n} admits an almost complex structure, then

$$\chi(M) \equiv (-1)^n \sigma(M) \mod 4.$$

$$\chi(M\#N) = \chi(M) + \chi(N) - 2, \qquad \sigma(M\#N) = \sigma(M) + \sigma(N).$$

- $k\mathbb{C}P^{2n}$ is not almost complex for k even.
- $\mathbb{C}P^{2n}\#\overline{\mathbb{C}P^{2n}}$, the blow-up of $\mathbb{C}P^{2n}$, is Kähler.

Hirzebruch: If M^{4n} admits an almost complex structure, then

$$\chi(M) \equiv (-1)^n \sigma(M) \mod 4.$$

$$\chi(M\#N) = \chi(M) + \chi(N) - 2, \qquad \sigma(M\#N) = \sigma(M) + \sigma(N).$$

- $k\mathbb{C}P^{2n}$ is not almost complex for k even.
- $\mathbb{C}P^{2n}\#\overline{\mathbb{C}P^{2n}}$, the blow-up of $\mathbb{C}P^{2n}$, is Kähler.
- $k\mathbb{C}P^{2n+1}$

Hirzebruch: If M^{4n} admits an almost complex structure, then

$$\chi(M) \equiv (-1)^n \sigma(M) \mod 4.$$

$$\chi(M\#N) = \chi(M) + \chi(N) - 2, \qquad \sigma(M\#N) = \sigma(M) + \sigma(N).$$

- $k\mathbb{C}P^{2n}$ is not almost complex for k even.
- $\mathbb{C}P^{2n}\#\overline{\mathbb{C}P^{2n}}$, the blow-up of $\mathbb{C}P^{2n}$, is Kähler.
- $k\mathbb{C}P^{2n+1}$ is Kähler, because $\mathbb{C}P^{2n+1}$ admits an orientation-reversing diffeomorphism.

Hirzebruch: If M^{4n} admits an almost complex structure, then

$$\chi(M) \equiv (-1)^n \sigma(M) \mod 4.$$

$$\chi(M\#N) = \chi(M) + \chi(N) - 2, \qquad \sigma(M\#N) = \sigma(M) + \sigma(N).$$

- $k\mathbb{C}P^{2n}$ is not almost complex for k even.
- $\mathbb{C}P^{2n}\#\overline{\mathbb{C}P^{2n}}$, the blow-up of $\mathbb{C}P^{2n}$, is Kähler.
- $k\mathbb{C}P^{2n+1}$ is Kähler, because $\mathbb{C}P^{2n+1}$ admits an orientation-reversing diffeomorphism.
- $k\mathbb{C}P^2$ and $k\mathbb{C}P^4$ are almost complex if and only if k is odd.

Theorem (—, Konstantis; 2017)

Theorem (—, Konstantis; 2017)

 $k\mathbb{C}P^{2n}$ is almost complex if and only if k is odd.

• $T(M\#N) \oplus \varepsilon^{4n} \cong p_M^*(TM) \oplus p_N^*(TN)$: The connected sum of stably almost complex manifolds is stably almost complex.

Theorem (—, Konstantis; 2017)

- $T(M\#N) \oplus \varepsilon^{4n} \cong p_M^*(TM) \oplus p_N^*(TN)$: The connected sum of stably almost complex manifolds is stably almost complex.
- ② Compute the kernel of $K(k\mathbb{C}P^{2n}) \longrightarrow KO(k\mathbb{C}P^{2n})$.

Theorem (—, Konstantis; 2017)

- $T(M\#N) \oplus \varepsilon^{4n} \cong p_M^*(TM) \oplus p_N^*(TN)$: The connected sum of stably almost complex manifolds is stably almost complex.
- ② Compute the kernel of $K(k\mathbb{C}P^{2n}) \longrightarrow KO(k\mathbb{C}P^{2n})$.
- **3** Identify the stable almost complex structures in $K(k\mathbb{C}P^{2n})$.

Theorem (—, Konstantis; 2017)

- $T(M\#N) \oplus \varepsilon^{4n} \cong p_M^*(TM) \oplus p_N^*(TN)$: The connected sum of stably almost complex manifolds is stably almost complex.
- ② Compute the kernel of $K(k\mathbb{C}P^{2n}) \longrightarrow KO(k\mathbb{C}P^{2n})$.
- **1** Identify the stable almost complex structures in $K(k\mathbb{C}P^{2n})$.
- Use result of Sutherland/Thomas (1965/67): A closed 2d-dimensional manifold M admits an almost complex structure if and only if it admits a stable almost complex structure whose d-th Chern class equals the Euler class of M.

More on connected sums

This result was generalized by Yang:

Theorem (Yang; $\overline{2018}$)

For almost complex 4n-dimensional almost complex manifolds M_1, \ldots, M_k , the connected sum $(\#_{i=1}^k M_i) \# (k-1) \mathbb{C} P^{2n}$ is almost complex.

More on connected sums

This result was generalized by Yang:

Theorem (Yang; 2018)

For almost complex 4n-dimensional almost complex manifolds M_1, \ldots, M_k , the connected sum $(\#_{i=1}^k M_i) \# (k-1) \mathbb{C} P^{2n}$ is almost complex.

In particular, $(2k-1)\mathbb{C}P^{2n}$ is almost complex.

More on connected sums

This result was generalized by Yang:

Theorem (Yang; 2018)

For almost complex 4n-dimensional almost complex manifolds M_1, \ldots, M_k , the connected sum $(\#_{i=1}^k M_i) \# (k-1) \mathbb{C} P^{2n}$ is almost complex.

In particular, $(2k-1)\mathbb{C}P^{2n}$ is almost complex.

The proof uses results of Kahn (1969) on the obstruction

$$\mathfrak{o}(M,J)\in H^{4n}(M,M\setminus D;\pi_{4n-1}(\mathrm{SO}(4n)/\mathrm{U}(2n)))$$

to extend a given almost complex structure J on $M \setminus D$ to M. He shows that the obstruction vanishes for an explicit stable almost complex structure.

Theorem (Albanese, Milivojević; 2019)

Given r closed almost complex manifolds of dimension n, their connected sum is automatically almost complex if and only if

- n = 4m, and r = 1,
- n = 8k + 2, and $r \equiv 1 \mod (4k)!$,
- n = 8k + 6, and $r \equiv 1 \mod \frac{1}{2}(4k + 2)!$.

Theorem (Albanese, Milivojević; 2019)

Given r closed almost complex manifolds of dimension n, their connected sum is automatically almost complex if and only if

- n = 4m, and r = 1,
- n = 8k + 2, and $r \equiv 1 \mod (4k)!$,
- n = 8k + 6, and $r \equiv 1 \mod \frac{1}{2}(4k + 2)!$.

The natural stable almost complex structure J on $M = \#_{i=1}^r M_i$ restricts to an almost complex structure J on $M \setminus D$.

Theorem (Albanese, Milivojević; 2019)

Given r closed almost complex manifolds of dimension n, their connected sum is automatically almost complex if and only if

- n = 4m, and r = 1,
- n = 8k + 2, and $r \equiv 1 \mod (4k)!$,
- n = 8k + 6, and $r \equiv 1 \mod \frac{1}{2}(4k + 2)!$.

The natural stable almost complex structure \tilde{J} on $M = \#_{i=1}^r M_i$ restricts to an almost complex structure J on $M \setminus D$. Then

$$\mathfrak{o}(M,J)\in H^{8k+2}(M,M\backslash D;\pi_{8k+1}(\mathrm{SO}(8k+2)/\mathrm{U}(4k+2)))\cong \mathbb{Z}_{(4k)!}$$

Theorem (Albanese, Milivojević; 2019)

Given r closed almost complex manifolds of dimension n, their connected sum is automatically almost complex if and only if

- n = 4m, and r = 1,
- n = 8k + 2, and $r \equiv 1 \mod (4k)!$,
- n = 8k + 6, and $r \equiv 1 \mod \frac{1}{2}(4k + 2)!$.

The natural stable almost complex structure J on $M=\#_{i=1}^r M_i$ restricts to an almost complex structure J on $M\setminus D$. Then $\mathfrak{o}(M,J)\in H^{8k+2}(M,M\setminus D;\pi_{8k+1}(\mathrm{SO}(8k+2)/\mathrm{U}(4k+2)))\cong \mathbb{Z}_{(4k)!}$ computes as

$$o(M,J) = \frac{1}{2}(\chi(M) - c_{4k+1}(\tilde{J})) = \frac{1}{2}(\chi(M) - \sum_{i=1}^{r} \chi(M_i)) = 1 - r.$$

Theorem (Albanese, Milivojević; 2019)

- n = 4m, and r = 1,
- n = 8k + 2, and $r \equiv 1 \mod (4k)!$,
- n = 8k + 6, and $r \equiv 1 \mod \frac{1}{2}(4k + 2)!$.

Theorem (Albanese, Milivojević; 2019)

- n = 4m, and r = 1,
- n = 8k + 2, and $r \equiv 1 \mod (4k)!$,
- n = 8k + 6, and $r \equiv 1 \mod \frac{1}{2}(4k + 2)!$.
- n = 4m: For $r \ge 2$ the connected sum $\#_{i=1}^r (S^1 \times S^{4m-1})$ is not almost complex.

Theorem (Albanese, Milivojević; 2019)

- n = 4m, and r = 1,
- n = 8k + 2, and $r \equiv 1 \mod (4k)!$,
- n = 8k + 6, and $r \equiv 1 \mod \frac{1}{2}(4k + 2)!$.
- n = 4m: For $r \ge 2$ the connected sum $\#_{i=1}^r (S^1 \times S^{4m-1})$ is not almost complex.
- n = 8k + 2: (Yang) $\#_{i=1}^{r}(S^{4k+1} \times S^{4k+1})$ admits an almost complex structure if and only if $r \equiv 1 \mod (4k)$!

Theorem (Albanese, Milivojević; 2019)

- n = 4m, and r = 1,
- n = 8k + 2, and $r \equiv 1 \mod (4k)!$,
- n = 8k + 6, and $r \equiv 1 \mod \frac{1}{2}(4k + 2)!$.
- n = 4m: For $r \ge 2$ the connected sum $\#_{i=1}^r (S^1 \times S^{4m-1})$ is not almost complex.
- n = 8k + 2: (Yang) $\#_{i=1}^{r}(S^{4k+1} \times S^{4k+1})$ admits an almost complex structure if and only if $r \equiv 1 \mod (4k)$!
- n = 8k + 6: (Yang) $\#_{i=1}^{r}(S^{4k+3} \times S^{4k+3})$ admits an almost complex structure if and only if $r \equiv 1 \mod (4k)$!

More examples (Albanese, Milivojević): if M_1, \ldots, M_r are (4m+2)-dimensional almost complex manifolds with $H^{2j}(M_i;\mathbb{Q})=0$ for $j=1,\ldots,2m$, then $M=\#_{i=1}^rM_i$ can only admit an almost complex structure if $r\equiv 1 \mod \frac{1}{2}(2m)!$.

More examples (Albanese, Milivojević): if M_1, \ldots, M_r are (4m+2)-dimensional almost complex manifolds with $H^{2j}(M_i;\mathbb{Q})=0$ for $j=1,\ldots,2m$, then $M=\#_{i=1}^rM_i$ can only admit an almost complex structure if $r\equiv 1\mod \frac{1}{2}(2m)!$.

The almost complex structure on M_i induces a spin^c structure. Its spin^c Dirac operator $\partial_{M_i}^c$ has index

$$\int_{M_i} \exp(c_1(TM_i)/2) \operatorname{ch}(TM_i) \hat{A}(TM_i) = \frac{1}{(2m)!} \chi(M_i) \in \mathbb{Z}$$

If M is almost complex, then analogously

$$\frac{1}{(2m)!}\chi(M) = \frac{1}{(2m)!}(\sum_{i=1}^r \chi(M_i) - 2(r-1)) \in \mathbb{Z}.$$

• Borel–Serre (1953): The only spheres that admit almost complex structures are S^2 and S^6 .

- Borel–Serre (1953): The only spheres that admit almost complex structures are S^2 and S^6 .
- Calabi–Eckmann (1953): $S^{2p+1} \times S^{2q+1}$ admits an almost complex structure.

- Borel–Serre (1953): The only spheres that admit almost complex structures are S^2 and S^6 .
- Calabi–Eckmann (1953): $S^{2p+1} \times S^{2q+1}$ admits an almost complex structure.
- Calabi (1956): Any oriented hypersurface in \mathbb{R}^7 admits an almost complex structure

- Borel–Serre (1953): The only spheres that admit almost complex structures are S^2 and S^6 .
- Calabi–Eckmann (1953): $S^{2p+1} \times S^{2q+1}$ admits an almost complex structure.
- Calabi (1956): Any oriented hypersurface in \mathbb{R}^7 admits an almost complex structure, in particular $S^2 \times S^4$.

- Borel–Serre (1953): The only spheres that admit almost complex structures are S^2 and S^6 .
- Calabi–Eckmann (1953): $S^{2p+1} \times S^{2q+1}$ admits an almost complex structure.
- Calabi (1956): Any oriented hypersurface in \mathbb{R}^7 admits an almost complex structure, in particular $S^2 \times S^4$.
- Datta–Subramanian (1990): The only products of two spheres that admit an almost complex structure are $S^2 \times S^2$, $S^6 \times S^6$, $S^2 \times S^6$, and $S^2 \times S^4$.

- Borel–Serre (1953): The only spheres that admit almost complex structures are S^2 and S^6 .
- Calabi–Eckmann (1953): $S^{2p+1} \times S^{2q+1}$ admits an almost complex structure.
- Calabi (1956): Any oriented hypersurface in \mathbb{R}^7 admits an almost complex structure, in particular $S^2 \times S^4$.
- Datta–Subramanian (1990): The only products of two spheres that admit an almost complex structure are $S^2 \times S^2$, $S^6 \times S^6$, $S^2 \times S^6$, and $S^2 \times S^4$.
- Albanese–Milivojević (2018/19): (Partial) generalization to rational homology spheres.

- Borel–Serre (1953): The only spheres that admit almost complex structures are S^2 and S^6 .
- Calabi–Eckmann (1953): $S^{2p+1} \times S^{2q+1}$ admits an almost complex structure.
- Calabi (1956): Any oriented hypersurface in \mathbb{R}^7 admits an almost complex structure, in particular $S^2 \times S^4$.
- Datta–Subramanian (1990): The only products of two spheres that admit an almost complex structure are $S^2 \times S^2$, $S^6 \times S^6$, $S^2 \times S^6$, and $S^2 \times S^4$.
- Albanese–Milivojević (2018/19): (Partial) generalization to rational homology spheres.
- Open for general products of rational homology spheres.

- Borel–Serre (1953): The only spheres that admit almost complex structures are S^2 and S^6 .
- Calabi–Eckmann (1953): $S^{2p+1} \times S^{2q+1}$ admits an almost complex structure.
- Calabi (1956): Any oriented hypersurface in \mathbb{R}^7 admits an almost complex structure, in particular $S^2 \times S^4$.
- Datta–Subramanian (1990): The only products of two spheres that admit an almost complex structure are $S^2 \times S^2$, $S^6 \times S^6$, $S^2 \times S^6$, and $S^2 \times S^4$.
- Albanese–Milivojević (2018/19): (Partial) generalization to rational homology spheres.
- Open for general products of rational homology spheres.
- Open for sphere bundles over spheres.

Much is known about almost complex structures on homogeneous spaces (e.g., Wolf-Gray (1968)).

Much is known about almost complex structures on homogeneous spaces (e.g., Wolf–Gray (1968)).

Biquotients: G compact Lie group, and $H \subset G \times G$ acting on G:

$$(g_1,g_2)\cdot g:=g_1gg_2^{-1}.$$

If this action is free, then G//H is a manifold: a biquotient.

Much is known about almost complex structures on homogeneous spaces (e.g., Wolf–Gray (1968)).

Biquotients: G compact Lie group, and $H \subset G \times G$ acting on G:

$$(g_1,g_2)\cdot g:=g_1gg_2^{-1}.$$

If this action is free, then G//H is a manifold: a biquotient.

Singhof (1993) showed that $G/\!/T$ always admits a stable almost complex structure, where T is a torus of rank rkG.

Much is known about almost complex structures on homogeneous spaces (e.g., Wolf–Gray (1968)).

Biquotients: G compact Lie group, and $H \subset G \times G$ acting on G:

$$(g_1,g_2)\cdot g:=g_1gg_2^{-1}.$$

If this action is free, then G//H is a manifold: a biquotient.

Singhof (1993) showed that $G/\!/T$ always admits a stable almost complex structure, where T is a torus of rank rkG.

Open: When does G//H admit an almost complex structure?

Much is known about almost complex structures on homogeneous spaces (e.g., Wolf-Gray (1968)).

Biquotients: G compact Lie group, and $H \subset G \times G$ acting on G:

$$(g_1,g_2)\cdot g:=g_1gg_2^{-1}.$$

If this action is free, then $G/\!/H$ is a manifold: a biquotient.

Singhof (1993) showed that $G/\!/T$ always admits a stable almost complex structure, where T is a torus of rank rkG.

Open: When does $G/\!/H$ admit an almost complex structure?

—, Konstantis, Zoller (2018): found several infinite families of symplectic, in particular almost complex, biquotients.

