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Almost complex structures

An almost complex structure on a (compact, connected) manifold
M is an endomorphism J : TM → TM with J2 = −id.

There are many open questions concerning the integrability of
almost complex structures, e.g.:

1 Van de Ven (1966) gave many examples of almost complex
4-manifolds not admitting any complex structure.
(consider rCP2#sCP2#t(Σ2 × S2) for certain r , s, t.)
No such example known in higher dimensions!

2 The Hopf Problem (1948): does S6 admit a complex
structure?

This is not what this talk is about.
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Low dimensions

Dimension 2: Any oriented 2-manifold admits an almost complex
structure.

Dimension 4: Wu (1952): An oriented 4-manifold M admits an
almost complex structure if and only if there exists c ∈ H2(M;Z)
such that

c ≡ w2(M) mod 2 and c2 = 3σ(M) + 2χ(M).

An acs on M2n is a section in an SO(2n)/U(n)-bundle, so the
obstructions lie in H∗(M;π∗−1(SO(2n)/U(n))).

For n = 2: SO(4)/U(2) ∼= S2, so we have obstructions in
H3(M;π2(S2)) = H3(M;Z) and H4(M;π3(S2)) = H4(M;Z).
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Low dimensions

Dimension 6: Ehresmann (1952): Even simpler: we have
SO(6)/U(3) ∼= CP3, so the only obstruction lies in
H3(M;π2(CP3)) = H3(M;Z), which is again the third integral
Stiefel-Whitney class W3.

Dimension 8: Müller–Geiges (2000): There exists an acs on M if
and only if

W3 = 0,

χ(M) ≡ σ(M) mod 4,

If there exists a torsion element c ∈ H2(M,Z) with
c ≡ ω2(M) mod 2, then χ(M) ≡ 0 mod 2, and

If b2(M) = 0, then 8χ(M)− 4p2(M) + p21(M) = 0.
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Hirzebruch’s obstruction

Hirzebruch: If M4n admits an almost complex structure, then

χ(M) ≡ (−1)nσ(M) mod 4.

In particular: if M and N admit almost complex structures, then
M#N does not!

χ(M#N) = χ(M) + χ(N)− 2, σ(M#N) = σ(M) + σ(N).

kCP2n is not almost complex for k even.

CP2n#CP2n, the blow-up of CP2n, is Kähler.

kCP2n+1 is Kähler, because CP2n+1 admits an
orientation-reversing diffeomorphism.

kCP2 and kCP4 are almost complex if and only if k is odd.
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Connected sums

Theorem (—, Konstantis; 2017)

kCP2n is almost complex if and only if k is odd.

1 T (M#N)⊕ ε4n ∼= p∗M(TM)⊕ p∗N(TN): The connected sum
of stably almost complex manifolds is stably almost complex.

2 Compute the kernel of K (kCP2n) −→ KO(kCP2n).

3 Identify the stable almost complex structures in K (kCP2n).

4 Use result of Sutherland/Thomas (1965/67): A closed
2d-dimensional manifold M admits an almost complex
structure if and only if it admits a stable almost complex
structure whose d-th Chern class equals the Euler class of M.
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More on connected sums

This result was generalized by Yang:

Theorem (Yang; 2018)

For almost complex 4n-dimensional almost complex manifolds
M1, . . . ,Mk , the connected sum (#k

i=1Mi )#(k − 1)CP2n is almost
complex.

In particular, (2k − 1)CP2n is almost complex.

The proof uses results of Kahn (1969) on the obstruction

o(M, J) ∈ H4n(M,M \ D;π4n−1(SO(4n)/U(2n)))

to extend a given almost complex structure J on M \ D to M. He
shows that the obstruction vanishes for an explicit stable almost
complex structure.
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Even more on connected sums

Theorem (Albanese, Milivojević; 2019)

Given r closed almost complex manifolds of dimension n, their
connected sum is automatically almost complex if and only if

n = 4m, and r = 1,

n = 8k + 2, and r ≡ 1 mod (4k)!,

n = 8k + 6, and r ≡ 1 mod 1
2(4k + 2)!.

The natural stable almost complex structure J̃ on M = #r
i=1Mi

restricts to an almost complex structure J on M \ D. Then

o(M, J) ∈ H8k+2(M,M\D;π8k+1(SO(8k+2)/U(4k+2))) ∼= Z(4k)!

computes as

o(M, J) =
1

2
(χ(M)− c4k+1(J̃)) =

1

2
(χ(M)−

r∑
i=1

χ(Mi )) = 1− r .
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Even more on connected sums

Theorem (Albanese, Milivojević; 2019)

Given r closed almost complex manifolds of dimension n, their
connected sum is automatically almost complex if and only if

n = 4m, and r = 1,

n = 8k + 2, and r ≡ 1 mod (4k)!,

n = 8k + 6, and r ≡ 1 mod 1
2(4k + 2)!.

n = 4m: For r ≥ 2 the connected sum #r
i=1(S1 × S4m−1) is

not almost complex.

n = 8k + 2: (Yang) #r
i=1(S4k+1 × S4k+1) admits an almost

complex structure if and only if r ≡ 1 mod (4k)!

n = 8k + 6: (Yang) #r
i=1(S4k+3 × S4k+3) admits an almost

complex structure if and only if r ≡ 1 mod (4k)!
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n = 4m, and r = 1,

n = 8k + 2, and r ≡ 1 mod (4k)!,

n = 8k + 6, and r ≡ 1 mod 1
2(4k + 2)!.

n = 4m: For r ≥ 2 the connected sum #r
i=1(S1 × S4m−1) is

not almost complex.

n = 8k + 2: (Yang) #r
i=1(S4k+1 × S4k+1) admits an almost

complex structure if and only if r ≡ 1 mod (4k)!

n = 8k + 6: (Yang) #r
i=1(S4k+3 × S4k+3) admits an almost

complex structure if and only if r ≡ 1 mod (4k)!
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Even more on connected sums

More examples (Albanese, Milivojević): if M1, . . . ,Mr are
(4m + 2)-dimensional almost complex manifolds with
H2j(Mi ;Q) = 0 for j = 1, . . . , 2m, then M = #r

i=1Mi can only
admit an almost complex structure if r ≡ 1 mod 1

2(2m)!.

The almost complex structure on Mi induces a spinc structure. Its
spinc Dirac operator ∂/cMi

has index∫
Mi

exp(c1(TMi )/2) ch(TMi )Â(TMi ) =
1

(2m)!
χ(Mi ) ∈ Z

If M is almost complex, then analogously

1

(2m)!
χ(M) =

1

(2m)!
(

r∑
i=1

χ(Mi )− 2(r − 1)) ∈ Z.
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Almost complex structures on (products of) spheres

Borel–Serre (1953): The only spheres that admit almost
complex structures are S2 and S6.

Calabi–Eckmann (1953): S2p+1 × S2q+1 admits an almost
complex structure.

Calabi (1956): Any oriented hypersurface in R7 admits an
almost complex structure, in particular S2 × S4.

Datta–Subramanian (1990): The only products of two spheres
that admit an almost complex structure are S2 × S2, S6 × S6,
S2 × S6, and S2 × S4.

Albanese–Milivojević (2018/19): (Partial) generalization to
rational homology spheres.

Open for general products of rational homology spheres.

Open for sphere bundles over spheres.
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Biquotients

Much is known about almost complex structures on homogeneous
spaces (e.g., Wolf–Gray (1968)).

Biquotients: G compact Lie group, and H ⊂ G × G acting on G :

(g1, g2) · g := g1gg
−1
2 .

If this action is free, then G//H is a manifold: a biquotient.

Singhof (1993) showed that G//T always admits a stable almost
complex structure, where T is a torus of rank rkG .

Open: When does G//H admit an almost complex structure?

—, Konstantis, Zoller (2018): found several infinite families of
symplectic, in particular almost complex, biquotients.
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