An intrinsic characterization of projective special Kähler manifolds

Mauro Mantegazza

Università degli Studi di Milano-Bicocca Università degli Studi di Pavia

7 October 2019

Overview

- Quaternion-Kähler manifolds
- 2 Why and how?
- Special Kähler manifolds
- Intrinsic characterisation
- 6 Applications
- 6 Conclusions

Quaternion-Kähler manifolds

Definition

The quaternionic unitary group is

$$\operatorname{Sp}(n) = \{ Q \in \operatorname{Mat}(n, \mathbb{H}) | Q^*Q = I_n \} \leq \operatorname{GL}(n, \mathbb{H}).$$

Define the following left actions on \mathbb{H}^n : let $Q \in \operatorname{Sp}(n)$, $q \in \operatorname{Sp}(1)$.

$$L_Q: \mathbb{H}^n \longrightarrow \mathbb{H}^n$$
 $R_q: \mathbb{H}^n \longrightarrow \mathbb{H}^n$ $v \longmapsto Qv$ $v \longmapsto vq^*$

They provide embeddings

$$L : \operatorname{Sp}(n) \longrightarrow \operatorname{GL}(4n, \mathbb{R}), \qquad R : \operatorname{Sp}(1) \longrightarrow \operatorname{GL}(4n, \mathbb{R}).$$

Definition

 $\mathrm{Sp}(n)\mathrm{Sp}(1)$ is the subgroup of $\mathrm{GL}(4n,\mathbb{R})$ generated by $\mathrm{Sp}(n)$ and Sp(1).

$$\mathbb{Z}_2 \cong \{\pm I_{4n}\}$$
 $\underbrace{\qquad}_{\operatorname{Sp}(1)}$ $\operatorname{Sp}(n)\operatorname{Sp}(1)$ \longrightarrow $\operatorname{GL}(4n,\mathbb{R})$

 $\operatorname{Sp}(n)\operatorname{Sp}(1)$ is isomorphic to $(\operatorname{Sp}(n)\times\operatorname{Sp}(1))/\mathbb{Z}_2$.

Definition

A quaternion-Kähler manifold of dimension 4n > 8 is a Riemannian 4n-manifold with holonomy group contained in Sp(n)Sp(1) but not in Sp(n).

Some quaternion Kähler history

- Berger (1955): classification of holonomy groups, QKs appear;
- Wolf (1965): classification of symmetric QK;
- Alekseevsky (1975): classification of QK with simply transitive real solvable group of isometries (first non-sym. examples);
- De Wit, Van Proeyen (1992): obtain an example not appearing in Alekseevsky's classification (c-map);
- Cortés (1996): complete classification;
- Haydys (2008): HK/QK correspondence;
- Hitchin (2009): Mathematical description of the c-map (local);
- Alekseevsky, Cortés, Dyckmanns, Mohaupt (2015):
 c-map=rigid c-map+HK/QK;
- Macia, Swann (2015): global c-map, equivalence of previous constructions and twist.

C-map

From supergravity and string theory.

Special Kähler manifolds

Definition

A conic special Kähler (CSK) manifold $(M, g, I, \omega, \nabla, \xi)$ is the data of:

- a pseudo-Kähler manifold (M, g, I, ω);
- ullet a flat, torsion free, symplectic connection ∇ such that $d^{\nabla}I = 0$. i.e. ∇I is symmetric:
- a vector field ξ such that
 - $g(\xi, \xi)$ is nowhere vanishing;
 - $\nabla \xi = \nabla^{LC} \xi = id$, where ∇^{LC} is the Levi-Civita connection:
 - g is negative definite on $\langle \xi, I \xi \rangle$ and positive definite on its orthogonal complement.

Let $\mathbb{C}^{n,1}$ be \mathbb{C}^{n+1} endowed with the Hermitian form

$$\langle z, w \rangle = \overline{z_1}w_1 + \cdots + \overline{z_n}w_n - \overline{z_{n+1}}w_{n+1}.$$

Example

The open submanifold

$${z \in \mathbb{C}^{n,1} | \langle z, z \rangle < 0}$$

is conic special Kähler with the induced pseudo Kähler structure, $\nabla = \nabla^{LC}$ and ξ the position vector field.

A projective special Kähler (PSK) manifold is a Kähler manifold M endowed with a \mathbb{C}^* -bundle $\pi \colon \widetilde{M} \to M$ with $(\widetilde{M}, \widetilde{g}, \widetilde{I}, \widetilde{\omega}, \nabla, \xi)$ conic special Kähler such that ξ and $I\xi$ are the fundamental vector fields associated to $1, i \in \mathbb{C}$ respectively and M is the Kähler quotient with respect to the induced U(1)-action.

Example

 $\mathcal{H}^n_{\mathbb{C}}:=\{z\in\mathbb{C}^{n,1}|\langle z,z\rangle<0\}/\mathbb{C}^*$ is projective special Kähler, called complex hyperbolic n-space.

Problems with definition of a PSK $(\pi : \widetilde{M} \to M, \nabla)$:

- 1 It depends on objects defined on M:
- 2 Both algebraic and differential equations to be verified on M instead of *M*:
- **3** Given M it is not so easy to find ∇ .

Let $(\widetilde{M}, \widetilde{g}, \widetilde{I}, \widetilde{\omega}, \nabla, \xi)$ be CSK. We have a section $\widetilde{\eta}$ of $T^*M \otimes TM \otimes T^*M$ such that $\nabla = \nabla^{LC} + \widetilde{\eta}$.

The properties of CSK manifolds imply that if we lower the second index, $\flat_2(\widetilde{\eta})$ has image in $[S_{3,0}M]$, i.e. locally

$$\sum_{i\leq j\leq k} \left(a_{i,j,k}dz_idz_jdz_k + \overline{a_{i,j,k}}d\overline{z}_id\overline{z}_jd\overline{z}_k\right),$$

for $(U, z = (z_1, \dots, z_{n+1}))$ complex chart, $a_{i,i,k} \in \mathcal{C}^{\infty}(U, \mathbb{C})$.

•0000

Difference tensor

Let $(\widetilde{M}, \widetilde{g}, \widetilde{I}, \widetilde{\omega}, \nabla, \xi)$ be CSK. We have a section $\widetilde{\eta}$ of $T^*\widetilde{M} \otimes T\widetilde{M} \otimes T^*\widetilde{M}$ such that $\nabla = \nabla^{LC} + \widetilde{\eta}$.

The properties of CSK manifolds imply that if we lower the second index, $\flat_2(\widetilde{\eta})$ has image in $[S_{3,0}M]$, i.e. locally

$$\sum_{i\leq j\leq k} \left(a_{i,j,k}dz_idz_jdz_k + \overline{a_{i,j,k}}d\overline{z}_id\overline{z}_jd\overline{z}_k\right),\,$$

for $(U, z = (z_1, \dots, z_{n+1}))$ complex chart, $a_{i,i,k} \in \mathcal{C}^{\infty}(U, \mathbb{C})$. It is equivalent to take sections in $S_{3.0}M$, hence locally of the form

$$\sum_{i \leq j \leq k} a_{i,j,k} dz_i dz_j dz_k.$$

Essentially homogeneous polynomials of degree 3 with coefficients in $C^{\infty}(U,\mathbb{C})$ and variables dz_1,\ldots,dz_{n+1} .

Consider a PSK $(\pi : \widetilde{M} \to M, \nabla)$.

Given an open subset $U \subseteq M$ and a section $s \colon U \to M$, it induces a trivialisation

$$(\pi|_{\pi^{-1}(U)},z)\colon \pi^{-1}(U)\to U\times\mathbb{C}^*.$$

There exists a tensor $\eta \in T_{1,0}U \otimes T^{0,1}U \otimes T_{1,0}U$ such that $\flat_2 \eta$ is a tensor in $S_{3,0}U$ and

$$\widetilde{\eta} = z^2 \pi^* \eta + \overline{z^2 \pi^* \eta} = r^2 \cos(2\vartheta) 2 \operatorname{Re} \pi^* \eta + r^2 \sin(2\vartheta) 2 \operatorname{Im} \pi^* \eta$$

where $z = re^{i\vartheta}$.

We call η the (local) deviance.

Theorem $1\,$

On a Kähler 2n-manifold (M, g, I, ω) , giving a projective special Kähler structure is equivalent to giving an S^1 -bundle $\pi_S: S \to M$ endowed with a connection form φ and a bundle map

 $\gamma: S \to \sharp_2 S_{3,0} M$ such that:

- $2 \gamma(ua) = a^2 \gamma(u) \text{ for all } a \in S^1;$
- **3** given an open covering $\{U_{\alpha} | \alpha \in A\}$ of M and a family $\{s_{\alpha}\colon U_{\alpha}\to S\}_{\alpha\in A}$ of sections, denoting by η_{α} the local 1-form taking values in $T^{0,1}M \otimes T_{1,0}M$ determined by $\gamma \circ s_{\alpha}$, for all $\alpha \in A$:

D1
$$\Omega^{LC} + \Omega_{\mathbb{P}^n_{\mathbb{C}}} + [\eta_{\alpha} \wedge \overline{\eta_{\alpha}}] = 0$$
D2 $d^{LC}\eta_{\alpha} = 2is^*_{\alpha}\varphi \wedge \eta_{\alpha}$

In this case, 3 is satisfied by every such family of sections.

00000

The curvature form of $\nabla = \widetilde{\nabla}^{LC} + \widetilde{\eta}$ is

$$\widetilde{\Omega}^{LC} + [\widetilde{\eta} \wedge \widetilde{\eta}] + d\widetilde{\eta}$$

Flatness of ∇ implies

$$\begin{cases} \widetilde{\Omega}^{LC} + [\widetilde{\eta} \wedge \widetilde{\eta}] = 0 \\ \widetilde{d}^{LC} \widetilde{\eta} = 0 \end{cases} \rightsquigarrow \begin{cases} \Omega^{LC} + \Omega_{\mathbb{P}^n_{\mathbb{C}}} + [\eta_{\alpha} \wedge \overline{\eta}_{\alpha}] = 0 \\ d^{LC} \eta_{\alpha} = 2 \textit{is}_{\alpha}^* \varphi \wedge \eta_{\alpha} \end{cases}$$

Have we solved the problems?

- The definition depends on objects defined on M: we still have to find an S^1 -bundle (S, φ) , but an S^1 -bundle is determined (uniquely up to iso) by its Chern class, which is fixed up to torsion by the theorem.
 - Problem solved with added conditions (e.g. ω exact);
- **2** The conditions have to be verified on \widetilde{M} : now the conditions **D1**, **D2** are given on M;
- **3** Not so easy to find ∇ : now we only need to find γ , which is locally defined as a polynomial η_{α} with functional coefficients. It can be done by taking locally a generic η_{α} , restricting the cases with the algebraic condition **D1** and on the remaining cases verifying the differential condition **D2**.

Classification of projective special Kähler Lie 4-groups

Definition

A projective special Kähler Lie group is a Lie group with a projective special Kähler structure such that the Kähler structure is left-invariant.

Theorem 2

Up to isomorphisms of projective special Kähler manifolds, there are only two connected projective special Kähler Lie groups of dimension 4: $\mathcal{H}_{\sqrt{2}} \times \mathcal{H}_2$ and the complex hyperbolic plane. Up to isomorphisms that also preserve the Lie group structure, there are four projective special Kähler Lie groups of dimension 4.

#	g	1	ω	Conditions
1	rr _{3,0}	$le_1 = e_2, le_3 = e_4$	$a_1e^{1,2} + a_2e^{3,4}$	$a_1, a_2 > 0$
2	$\mathfrak{r}\mathfrak{r}'_{3,0}$	$le_1 = e_4, le_2 = e_3$	$a_1e^{1,4} + a_2e^{2,3}$	$a_1, a_2 > 0$
3	$\mathfrak{r}_2\mathfrak{r}_2$	$le_1 = e_2, le_3 = e_4$	$a_1e^{1,2} + a_2e^{3,4}$	$a_1, a_2 > 0$
4	$\mathfrak{r}'_{4,0,\delta}$	$le_4 = e_1, le_2 = e_3$	$a_1e^{1,4} + a_2e^{2,3}$	$-a_1, a_2 > 0$
5	$\mathfrak{r}'_{4,0,\delta}$	$le_4 = e_1, le_2 = -e_3$	$a_1e^{1,4} + a_2e^{2,3}$	$a_1, a_2 < 0$
6	$\mathfrak{d}_{4,2}$	$le_4 = -2e_1, le_2 = e_3$	$a_1e^{1,4} + a_2e^{2,3}$	$a_1, a_2 > 0$
7	$\mathfrak{d}_{4,1/2}$	$le_4 = e_3, le_1 = e_2$	$a_1(e^{1,2}-e^{3,4})$	$a_1 > 0$
8	$\mathfrak{d}'_{4,\delta}$	$le_4 = e_3, le_1 = e_2$	$a_1(e^{1,2}-\delta e^{3,4})$	$a_1 > 0$
9	$\mathfrak{d}'_{4,\delta}$	$le_4 = -e_3, le_1 = -e_2$	$a_1(e^{1,2}-\delta e^{3,4})$	$a_1 < 0$

Table: Kähler Lie algebras (Ovando 2004)

#	g	1	ω	Conditions
3	$\mathfrak{r}_2\mathfrak{r}_2$	$le_1 = e_2, le_3 = e_4$	$a_1e^{1,2} + a_2e^{3,4}$	$a_1 = \frac{1}{2}, a_2 = \frac{1}{4}$
6	$\mathfrak{d}_{4,2}$	$le_4 = -2e_1, le_2 = e_3$	$a_1e^{1,4} + a_2e^{2,3}$	$a_1 = \frac{1}{2}, a_2 > 0$
7	$\mathfrak{d}_{4,1/2}$	$le_4 = e_3, le_1 = e_2$	$a_1(e^{1,2}-e^{3,4})$	$a_1=rac{1}{4}$
8	$\mathfrak{d}'_{4,\delta}$	$le_4 = e_3, le_1 = e_2$	$a_1(e^{1,2}-\delta e^{3,4})$	$a_1 = \frac{1}{2}$
9	$\mathfrak{d}'_{4,\delta}$	$le_4 = -e_3, le_1 = -e_2$	$a_1(e^{1,2}-\delta e^{3,4})$	$a_1 = -rac{\delta}{4}$

Table: Kähler Lie algebras satisfying ${\bf D1}$

#	g	1	ω	Conditions
3	$\mathfrak{r}_2\mathfrak{r}_2$	$le_1=e_2, le_3=e_4$	$a_1e^{1,2} + a_2e^{3,4}$	$a_1 = \frac{1}{2}, a_2 = \frac{1}{4}$
7	$\mathfrak{d}_{4,1/2}$	$le_4 = e_3, le_1 = e_2$	$a_1(e^{1,2}-e^{3,4})$	$a_1=rac{1}{4}$
8	$\mathfrak{d}'_{4,\delta}$	$le_4 = e_3, le_1 = e_2$	$a_1(e^{1,2}-\delta e^{3,4})$	$a_1=rac{1}{2}$
9	$\mathfrak{d}'_{4,\delta}$	$le_4 = -e_3, le_1 = -e_2$	$a_1(e^{1,2}-\delta e^{3,4})$	$a_1 = -rac{\delta}{4}$

Table: PSK Lie algebras

Applying the c-map

Structure constants $\frac{SU(3,2)}{S(U(3)U(2))}$

$$\begin{split} du^1 &= u^{1,3}; \qquad du^2 &= u^{2,3}; \qquad du^3 &= 0; \\ du^4 &= -2u^{1,2} - 2u^{3,4}; \qquad du^5 &= 0; \\ du^6 &= -2u^{5,6} + 2u^{7,8} + 2u^{9,10} - 2u^{11,12}; \\ du^7 &= u^{1,9} + u^{1,11} - u^{2,10} - u^{2,12} - u^{5,7}; \\ du^8 &= u^{1,10} + u^{1,12} + u^{2,9} + u^{2,11} - u^{5,8}; \\ du^9 &= -u^{1,7} - u^{2,8} + u^{3,11} - u^{4,10} - u^{4,12} - u^{5,9}; \\ du^{10} &= -u^{1,8} + u^{2,7} + u^{3,12} + u^{4,9} + u^{4,11} - u^{5,10}; \\ du^{11} &= +u^{1,7} + u^{2,8} + u^{3,9} + u^{4,10} + u^{4,12} - u^{5,11}; \\ du^{12} &= +u^{1,8} - u^{2,7} + u^{3,10} - u^{4,9} - u^{4,11} - u^{5,12}. \end{split}$$

Structure constants $\frac{SO_0(4,3)}{SO(4)SO(3)}$

$$\begin{split} du^1 &= -\sqrt{2}u^{1,2}; \qquad du^2 = 0; \qquad du^3 = -2u^{3,4}; \\ du^4 &= 0; \qquad du^5 = 0; \\ du^6 &= -2u^{5,6} - 2u^{7,8} - 2u^{9,10} + 2u^{11,12}; \\ du^7 &= u^{1,9} + u^{1,12} - u^{2,10} + u^{2,11} + u^{3,7} + u^{3,8} - u^{4,8} - u^{5,7}; \\ du^8 &= -u^{1,10} - u^{1,11} - u^{2,9} + u^{2,12} - u^{3,7} - u^{3,8} - u^{4,7} - u^{5,8}; \\ du^9 &= u^{1,7} + \sqrt{2}u^{1,10} - u^{2,8} - u^{3,10} + u^{3,12} + u^{4,11} - u^{5,9}; \\ du^{10} &= -u^{1,8} - \sqrt{2}u^{1,9} - u^{2,7} + u^{3,9} - u^{3,11} + u^{4,12} - u^{5,10}; \\ du^{11} &= -u^{1,8} + \sqrt{2}u^{1,12} + u^{2,7} - u^{3,10} + u^{3,12} + u^{4,9} - u^{5,11}; \\ du^{12} &= u^{1,7} - \sqrt{2}u^{1,11} + u^{2,8} + u^{3,9} - u^{3,11} + u^{4,10} - u^{5,12}. \end{split}$$

Conclusions

No new examples: if we start from a Lie group we obtain a Lie group (Macia, Swann 2019) → Alekseevsky-Cortés' classification.

What if we apply the same procedure to non homogeneous manifolds?