Spinorial description of almost contact metric manifolds

Marius Kuhrt Ilka Agricola

Philipps-Universität Marburg

Dirac operators in differential geometry and global analysis

Table of Contents

Classical results

Almost contact metric structures

Spinors on almost contact metric manifolds

Converse construction in dimension 7

Riemannian Killing equation

$$\nabla_{\mathbf{X}}^{\mathbf{g}} \psi = \mu \mathbf{X} \cdot \psi, \qquad \mu \in \mathbb{C}$$

1. Describes equality case in Friedrich's inequality for the smallest eigenvalue λ of D on closed spin manifolds

$$\lambda^2 \geq \frac{n}{4(n-1)}\operatorname{Scal}_{\min}$$

- 2. Automatically Einstein
- 3. In odd dimensions $n \neq 7$: $\exists 1 \text{ RKS} \Leftrightarrow \exists 2 \text{ RKS} \Leftrightarrow \text{E-Sasaki}$
- 4. n = 7: ∃ 1 RKS \Leftrightarrow nearly parallel G_2 ; ∃ 2 RKS \Leftrightarrow E-Sasaki; ∃ 3 RKS \Leftrightarrow 3-Sasaki

SU(3)-manifolds in n=6 [Agricola, Chiossi, Friedrich, Höll]

A 6-manifold admits an SU(3)-structure iff it has a spinor ψ of length 1. It satisfies the equation

$$\nabla_X^g \psi = S(X) \cdot \psi + \eta(X) \cdot j(\psi)$$

for some $S: TM \rightarrow TM$ and a 1-form η (and $j := e_1e_2e_3e_4e_5e_6$).

Class	Description	dim
χ1	$S=\lambda J,\ \eta=0$	1
$\chi_{\bar{1}}$ (nK)	$\mathcal{S}=\muId,\ \eta=0$	1
χ2	$S\in \Lambda^2\mathbb{R}^6$, $SJ=JS$, $\mathrm{tr}(JS)=0$, $\eta=0$	8
χ̄2	$S\in S_0^2\mathbb{R}^6$, $SJ=JS$, $\eta=0$	8
χ3	$S\in S^2_0\mathbb{R}^6$, $SJ=-JS$, $\eta=0$	12
χ4	$S\in \Lambda^2\mathbb{R}^6$, $SJ=-JS$, $\eta=0$	6
χ5	$S=0$, $\eta \neq 0$	6

Table of Contents

Classical results

Almost contact metric structures

Spinors on almost contact metric manifolds

Converse construction in dimension 7

Almost contact metric manifolds

 $(M^{2k+1}, g, \varphi, \xi, \eta)$ is an almost contact metric manifold if

- 1. η 1-form dual to ξ
- 2. $\mathcal{H}:=\langle \xi \rangle^{\perp}$ admits an almost complex structure φ compatible with g
- 3. In formulae: $\varphi^2 = -I + \eta \otimes \xi, \ \eta \circ \varphi = 0$ $\varphi(\xi) = 0 \text{ and }$ $g(\varphi X, \varphi Y) =$ $g(X, Y) \eta(X)\eta(Y)$
- 4. Fundamental 2-Form:

$$\Phi(X,Y) := g(X,\varphi(Y))$$

Definition

Almost contact metric structure (φ, ξ) is \mathcal{H} -parallel if

$$(\nabla_X^g \Phi)(Y,Z) = 0 \qquad \forall X \in \mathit{TM}, \ Y,Z \in \mathcal{H},$$

or equivalently $\nabla^g \Phi \in TM \otimes \mathcal{H} \wedge \mathcal{V}$.

Remark

All information about $\nabla^g \Phi$ is contained in $(\nabla_X^g \varphi)(\xi)$.

Definition

The intrinsic endomorphism of the a.c.m. structure is

$$S: TM \to \mathcal{H}, \qquad S(X) := -(\nabla_X^g \varphi)(\xi) = \varphi(\nabla_X^g \xi)$$

Example

If α -Sasaki then $\nabla_X^g \xi = -\alpha \varphi(X)$, hence $S = \alpha \operatorname{Id}_{\mathcal{H}}$.

Chinea-Gonzalez' classification of a.c.m. manifolds

Class	Defining equation
\mathcal{C}_1	$(abla_X^{m{g}}\Phi)(X,Y)=0, abla^{m{g}}\eta=0$
\mathcal{C}_2	$d\Phi= abla^{oldsymbol{arepsilon}}\eta=0$
\mathcal{C}_3	$(abla_X^{m{g}}\Phi)(Y,Z)-(abla_{arphi(X)}^{m{g}}\Phi)(arphi(Y),Z)=0,\delta\Phi=0$
\mathcal{C}_4	$(\nabla_X^g \Phi)(Y, Z) = \frac{-1}{2(k-1)} [g(\varphi(X), \varphi(Y)) \delta \Phi(Z) - g(\varphi(X), \varphi(Z)) \delta \Phi(Y) + \dots$
\mathcal{C}_5	$(\nabla_X^g \Phi)(Y, Z) = \frac{1}{2k} \left[\eta(Y) \Phi(X, Z) - \eta(Z) \Phi(X, Y) \right] \delta \eta$
\mathcal{C}_6	$(\nabla_X^g \Phi)(Y, Z) = \frac{1}{2k} \left[\eta(Y) g(X, Z) - \eta(Z) g(X, Y) \right] \delta \Phi(\xi)$
\mathcal{C}_7	$(\nabla_X^g \Phi)(Y, Z) = \frac{\eta(\mathbf{Z})}{\eta(\mathbf{Z})}(\nabla_Y^g \eta)(\varphi(X)) + \frac{\eta(\mathbf{Y})}{\eta(\mathbf{Y})}(\nabla_{\varphi(X)}^g \eta)(Z), \delta\Phi = 0$
\mathcal{C}_8	$(\nabla_X^g \Phi)(Y, Z) = -\eta(Z)(\nabla_Y^g \eta)(\varphi(X)) + \eta(Y)(\nabla_{\varphi(X)}^g \eta)(Z), \delta \eta = 0$
\mathcal{C}_9	$(\nabla_X^g \Phi)(Y, Z) = \frac{\eta(Z)}{\eta(Z)} (\nabla_Y^g \eta)(\varphi(X)) - \frac{\eta(Y)}{\eta(Y)} (\nabla_{\varphi(X)}^g \eta)(Z)$
\mathcal{C}_{10}	$(\nabla_X^g \Phi)(Y, Z) = -\eta(Z)(\nabla_Y^g \eta)(\varphi(X)) - \eta(Y)(\nabla_{\varphi(X)}^g \eta)(Z)$
\mathcal{C}_{11}	$(abla_X^{oldsymbol{arepsilon}}\Phi)(Y,Z)=-\eta(X)(abla_{\xi}^{oldsymbol{arepsilon}}\Phi)(arphi(Y),arphi(Z))$
\mathcal{C}_{12}	$(\nabla_X^{g} \Phi)(Y, Z) = \eta(X) \eta(Z) (\nabla_{\xi}^{g} \eta) (\varphi(Y)) - \eta(X) \eta(Y) (\nabla_{\xi}^{g} \eta) (\varphi(Z))$

Description of \mathcal{H} -parallel a.c.m. structures in terms of S

Remark: For pure classes: \mathcal{H} -parallel $\Leftrightarrow S \neq 0$.

Class	Description	dim
\mathcal{C}_5	$\mathcal{S}=lphaarphi$, $(lpha=-rac{1}{2k}\delta\eta)$	1
\mathcal{C}_6	$S = \alpha \operatorname{Id}_{\mathcal{H}}, \ (\alpha = \frac{1}{2k} \delta \Phi(\xi))$	1
$\overline{\mathcal{C}_7}$	$S\in S^2_0\mathcal{H}^*$, $Sarphi=arphi S$	$k^2 - 1$
\mathcal{C}_8	$S\in \Lambda^2\mathcal{H}^*$, $Sarphi=arphi S$, $\operatorname{tr}(arphi S)=0$	$k^2 - 1$
\mathcal{C}_9	$S\in S_0^2\mathcal{H}^*$, $Sarphi=-arphi S$	$k^2 + k$
\mathcal{C}_{10}	$\mathcal{S} \in \Lambda^2\mathcal{H}^*$, $\mathcal{S}arphi = -arphi \mathcal{S}$	$k^2 - k$
\mathcal{C}_{12}	$S _{\mathcal{H}}=0$	2 <i>k</i>
		-

- $ightharpoonup \mathcal{C}_5$: lpha-Kenmotsu, \mathcal{C}_6 : lpha-Sasaki, $\mathcal{C}_5 \oplus \mathcal{C}_6$: trans-Sasaki
- $ightharpoonup \mathcal{C}_6 \oplus \mathcal{C}_7$: quasi-Sasaki
- ▶ Normal ($N = [\varphi, \varphi] + d\eta \otimes \xi = 0$): $C_5 \oplus C_6 \oplus C_7 \oplus C_8$
- \blacktriangleright ξ Killing: $C_6 \oplus C_7 \oplus C_{10}$

Table of Contents

Classical results

Almost contact metric structures

Spinors on almost contact metric manifolds

Converse construction in dimension 7

The spinor bundle

 (M^n,g) Riemannian spin manifold. The spinor bundle $\Sigma^{\mathbb{C}}M$

- ▶ Complex bundle over M of rank $2^{\lfloor n/2 \rfloor}$
- ▶ Clifford product: $X \cdot \psi$, $X \in T_pM$, $\psi \in \Sigma_p^{\mathbb{C}}M$, s.t.

$$X \cdot Y \cdot \psi + Y \cdot X \cdot \psi = -2g(X, Y)\psi$$

in particular if $X \perp Y$ then $X \cdot Y \cdot \psi = -Y \cdot X \cdot \psi$, and $X \cdot X \cdot \psi = -g(X, X) \cdot \psi$.

- Scalar product (\cdot, \cdot) s.t. $(X \cdot \psi, Y \cdot \psi) = g(X, Y)(\psi, \psi)$
- Lift of Levi-Civita connection is again metric and satisfies

$$\nabla_X^{\mathbf{g}}(Y \cdot \psi) = (\nabla_X^{\mathbf{g}} Y) \cdot \psi + Y \cdot \nabla_X^{\mathbf{g}} \psi$$

The spinor bundle of an a.c.m. manifold

 (M^{2k+1},g) spin, $\Sigma^{\mathbb{C}}M$ its spinor bundle

$$L_{1,2} := \{ \psi \in \Gamma(\Sigma M) : (\varphi(X) \pm iX) \cdot \psi = 0 \ \forall X \in \mathcal{H} \}$$

are two 1-dimensional subbundles and on L_1 : $\xi \cdot \psi = i \psi$; on L_2 : $\xi \cdot \psi = (-1)^k i \psi$. [Becker-Bender]

Definition

Family of connections on for j = 1, 2 and $s \in \mathbb{R}$:

$$\nabla_X^{j,s}\psi = \nabla_X^g \psi - \epsilon_j \left[\frac{1}{2}S(X) \cdot \psi + s\eta(X)\xi \cdot \psi\right]$$

where $\epsilon_1 = 1$ and $\epsilon_2 = (-1)^k$.

Proposition

 $\nabla^{j,s}$ is a connection on L_j if and only if the a.c.m. structure is \mathcal{H} -parallel.

Remark

By a result of Cabrera and Gonzalez-Davila, $\nabla_X^g - \frac{1}{2}S(X)$ coincides with the lift of the minimal U(n)-connection $\nabla^g + \Gamma$ to the bundle L_j , where Γ is the intrinsic torsion.

For simplicity we now consider only L_1 .

For $\psi \in \Gamma(L_1)$, $\|\psi\| = 1$, we know $\text{Re}(\nabla_X^g \psi, \psi) = 0$ and $\nabla_X^g \psi - \frac{1}{2}S(X) \cdot \psi \in L_1$, therefore

$$\nabla_X^g \psi - \frac{1}{2} S(X) \cdot \psi = i \, \mu(X) \psi$$

for a real 1-form μ .

Question: What are the interesting/special spinors in L_i ?

Example (Einstein-Sasaki)

 L_j each contains a Killing spinor. We know $S=\operatorname{Id}_{\mathcal H}.$ If $\nabla_X^g\psi=\lambda X\cdot\psi$ then

$$\nabla_X^g \psi - \lambda \operatorname{Id}_{\mathcal{H}}(X) \cdot \psi = \lambda \, \eta(X) \xi \cdot \psi$$

Example (η -Einstein [Friedrich, Kim])

Sasaki mfd s.t. Ric = $\nu g + \kappa \eta \otimes \eta$: generalized Killing spinor in L_1 satisfies

$$\nabla_X^g \psi = aX \cdot \psi + b\eta(X) \cdot \xi \cdot \psi$$

i.e.

$$\nabla_X^g \psi - a \operatorname{Id}_{\mathcal{H}}(X) \cdot \psi = (a+b) \eta(X) \xi \cdot \psi.$$

Remark

A rescaling of $S \propto \operatorname{Id}_{\mathcal{H}}$ and $\mu \propto \eta$ can be obtained by a suitable homothetic deformation.

Conclusion:

Look for parallel sections w.r.t the connection $\nabla_X^1 \psi = \nabla_X^g \psi - \frac{1}{2} S(X) \cdot \psi - s \eta(X) \xi \cdot \psi$!

Unfortunately...

$$R^{s}(X,Y)\psi = R^{g}(X,Y)\psi + [S(X),S(Y)]\cdot\psi - \frac{1}{2}\varphi(R^{g}(X,Y)\xi)\cdot\psi + \Phi(\nabla_{X}^{g}\xi,\nabla_{Y}^{g}\xi) - s\,d\eta(X,Y)\xi\cdot\psi$$

Remark

Observe that dependence on s is only given by $s\,d\eta$. Indeed, the hyperbolic space \mathbb{H}^7 can be equipped with a Kenmotsu structure (\mathcal{C}_5) , and parallel spinors for $\nabla^{1,s}$ can be constructed for any $s\in\mathbb{R}$.

Generalized Killing spinors can occur in the following classes, provided that $\mu \propto \eta$:

$$\nabla_X^g \psi = \frac{1}{2} S(X) \cdot \psi + \eta(X) \xi \cdot \psi.$$

Class	Description	dim
\mathcal{C}_6	$S = \alpha \operatorname{Id}_{\mathcal{H}}, \ (\alpha = \frac{1}{2k} \delta \Phi(\xi))$	1
$\overline{\mathcal{C}_7}$	$S\in S_0^2\mathcal{H}^*$, $Sarphi=arphi S$	$k^2 - 1$
\mathcal{C}_9	$S\in S_0^2\mathcal{H}^*$, $Sarphi=-arphi S$	$k^2 + k$

Table of Contents

Classical results

Almost contact metric structures

Spinors on almost contact metric manifolds

Converse construction in dimension 7

Converse construction in dimension 7

Let (M^7, g) a Riemannian spin manifold.

- $ightharpoonup \Sigma^{\mathbb{C}} M$ is complexification of a real 8-dimensional bundle $\Sigma^{\mathbb{R}} M$
- ▶ If M is closed or non-closed with $\omega_6(M) = 0$, \exists one (and then two) nowhere vanishing vector fields

Hence Σ will then admit a trivial rank-2 subbundle $E = \operatorname{span}(\psi, V \cdot \psi)$ which will play the role of $L_1 \oplus L_2$.

Given $\psi \in \Sigma^{\mathbb{R}}_{\rho}M$, $\|\psi\| = 1$ we have $(X \cdot \psi, \psi) = 0$ and therefore

$$\Sigma_p^{\mathbb{R}} M = \langle \psi \rangle \oplus T_p M \cdot \psi$$

and the map $X \mapsto X \cdot \psi$ is an isometry between T_pM and ψ^{\perp} .

Lemma

Given $E \subset \Sigma M$ a trivial rank 2 subbundle of ΣM then

- 1. There exists $\xi \in \mathfrak{X}(M)$, $\|\xi\| = 1$, unique up to sign s.t. $\xi \cdot E = E$ and $\xi \cdot E^{\perp} = E^{\perp}$.
- 2. An almost contact metric structure on M can be defined by

$$\varphi(X) \cdot \psi := \xi \cdot X \cdot \psi \qquad \forall X \perp \xi, \qquad \varphi(\xi) := 0.$$

independently of ψ .

Proof.

Take
$$\psi_1, \psi_2 \in E$$
 orthogonal, $\|\psi_i\| = 1$, then $\psi_2 \in \Gamma(\psi_1^{\perp}) \cong \Gamma(TM \cdot \psi_1)$ i.e. $\psi_2 = \xi \cdot \psi_1$.

Since $\xi \cdot \xi \cdot \psi = -\psi$, multiplication with ξ defines an almost complex structure in E^{\perp} and hence an a.c.m. structure in TM. \square

Given an a.c.m. structure on (M^7, g) the bundle E can be retreived via

$$E = \{ \psi \in \Gamma(\Sigma^{\mathbb{R}} M) : (\varphi(X) - \xi X) \cdot \psi = 0 \ \forall X \perp \xi \}.$$

Then: $E_{\mathbb{C}} \cong L_1 \oplus L_2$.

Corollary

$$\{a.c.m. \ structures^*\} \stackrel{1:1}{\longleftrightarrow} \{E^2 \subset \Sigma^{\mathbb{R}}M \ trivial\}$$

For $\psi \in \Gamma(E)$ with $\|\psi\| = 1$ we now have that $(\nabla_X^g \psi, \psi) = 0$, and since $TM \cong \langle \psi \rangle^{\perp}$ there exist $S \colon TM \to \mathcal{H}$ and $\mu \in T^*M$ s.t.

$$\nabla_X^{\mathbf{g}} \psi = \frac{1}{2} S(X) \cdot \psi + \mu(X) \xi \cdot \psi$$

Question: In which cases are S and μ independent of ψ ?

Proposition

Let S',
$$\mu'$$
 s.t. $\nabla_X^g(\xi \cdot \psi) = \frac{1}{2}S'(X) \cdot (\xi \cdot \psi) + \mu'(X)\xi \cdot (\xi \cdot \psi)$ then

$$S(X) + S'(X) = 2\varphi(\nabla_X^g \xi)$$

and $\mu' = \mu$. In particular, S does not depend on ψ if and only if $S(X) = \varphi(\nabla_X^g \xi)$ and the structure is \mathcal{H} -parallel.