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A 7-dimensional Riemannian manifold (M7, g) said to have a nearly
parallel Gy-structure if its cone (C(M7),g) = (Rso x M’ dr? + r’g)
has holonomy contained in Spin(7).

In this talk, we assume that M7 = S7 for simplicity.

A nearly parallel G,-structure ¢ € Q3(S7) on S7, which satisfies

dyp =4 x ¢, is defined by the following.

1
¢ = §w2 +ReQ, ¢ =i(0,)P|s.

where w = ,dz' NdZ', Q= dz' A -+ A dz* are the standard

Kahler form and the holomorph|c volume form on C* =~ RR8.
Define y € Q3(S7, TS7) by

g(x(x,y,z),w) = *p(x,y,z,w).
A 3-submanifold L3 ¢ S7 is an associative submanifold if

gD‘TL = VO]L < (D|TC(L) = VOlC(L) <~ X’TL =0.
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Recall:

1
¢ =W TR o =i(0)0]s.

A 3-submanifold L3 € S7 is an associative submanifold if

(P|TL = vol; <— ¢|TC(L) = VOlc(L).

Example (Examples of associative submanifolds)

@ Some totally geodesic S® C S7,
@ Special Legendrian submanifolds,
@ The pull back of holomorphic curves in CP3 via S7 — CP3.
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Example (Examples of associative submanifolds)

@ Some totally geodesic S® C S7,
@ Special Legendrian submanifolds,
@ The pull back of holomorphic curves in CP3 via S7 — CP3.

o ([Lotay, Mashimo]) Classification of homogeneous associative
submanifolds

@ Lotay constructed an example (A3) not arising from examples
above.

o A3 = SU(2) is a orbit of the irreducible SU(2) representation on
S3C? = C* = RE.

@ Such examples (up to the Spin(7)-action) other than A; are not
known.

@ Can we get new examples having the same property by
deforming As?
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Deformation of associative submanifolds

Define the moduli space of associative submanifolds by
M = {L' € S": compact associative submanifolds}.

Fix L3 € M. Let v — L be a normal bundle. Since exp: v — S is a
diffeomorphism around the zero section, we have

exp : [(L,U) := {small sections of v} = {submanifolds near L}.
Define F : [(L,U) — Q3(L,v) = T(L,v) by
F(V) =" 60" (i),
(Here, expy, : L = M, expy(x) = exp,(V4).)

(¢y : vy — v is a bundle isomorphism. We need this so that F
takes values in (L, v).)

expy/(L) :associative < F(V) =0 (:1st order nonlinear PDE).

locally
Y

=~ FY(0).
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Proposition (Mclean, Akbulut-Salur, Gayet)

Then a linearization of F at 0 is given by

D = (dF)o : T(L,v) — Q3(L,v) = T(L,v),

3
DV =Y exViV+V,
i=1
where {ey, e, e3} is a local oriented orthonormal frame of TL s.t.
e = €41 X €iy2 = ¢(€iy1, €42, -)F fori € Z/3, V* is the connection
on v induced by the Levi-Civita connection V of S'.

@ darank 4 vector bundle E —+ M s.t. v = S ®y E, where
S — M is a spinor bundle. Then 37 & x ViVis a twisted
Dirac operator.

@ The space of infinitesimal associative deformations of L (=
ker D) is a (—1)-eingenspace of a twisted Dirac operator.
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Proposition (Mclean, Akbulut-Salur, Gayet)

Then a linearization of F at 0 is given by

D = (dF)o : T(L,v) — Q3(L,v) = T(L,v),

3
DV =) exViV+V,
i=1
where {ey, €2, €3} is a local oriented orthonormal frame of TL s.t.
e = €11 X €12 = @1, €42, ) fori € Z/3, V* is the connection
on v induced by the Levi-Civita connection V of S”.

@ D is elliptic.
o D is self-adjoint = ker D = CokerD.
The standard technique to prove the smoothness of a moduli space is

an implicit function theorem (cf. [McLean]).
But in our case, D is surjective iff dimker D = 0.
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So that F~1(0) is smooth, the following must hold.

VV € ker D, 3{V(t)}ie(—e,e) C T(L, V) st

F(V(£)=0 and  V()=0. —V(r) =V.

V € ker D : unobstructed & F{V(t)} as above.
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How to check : Consider a formal power series expansion w.r.t. t
V(t) =Y Vitk/kl (Vi e T(Lv)).
k=1
Then decide Vi so that F(V(t)) = 0.

I GreS)

=(d*F)o(V1, V1) + D(V2).

0= —SF(V(1)

Thus if (d?F)o(V4, V1) € ImD, V = V4 is not unobstructed.
We can repeat this process. If it stops for some k, V is not
unobstructed.
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This idea is used for deformations of many geometric problems.

@ All infinitesimal deformations of the following are not
unobstructed to second order.
o Einstein metrics on CP?' x S%(/ > 2) ([Koiso]),
o nearly Kihler structures on SU(3)/T? ([Foscolo]).

@ All infinitesimal deformations of harmonic maps T2 — S3 are
not unobstructed to third order ([Mukail).

@ All infinitesimal deformations of complex structures on a
Calabi-Yau manifold are unobstructed ([Tian, Todorov]).
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@ When we cannot use the implicit function theorem, it is rare
that all infinitesimal deformations are unobstructed.
~» The result of Tian, Todorov is surprising.
~+ This was generalized by Goto (" The geometric structures
defined by closed differential forms”) .

@ The infinitesimal deformations of the normal homogeneous nearly
parallel Gy-manifolds are studied by [Alexandrov-Semmelmann].
Nearly parallel Gy-manifolds are all rigid except for the
Aloff-Wallach manifold SU(3)/U(1), which admits an
8-dimensional infinitesimal deformations.

It is an open problem whether these infinitesimal deformations
are unobstructed or not.

@ The more general deformation theory in terms of
DGLA(Differential graded Lie algebra) (or L., algebra) :
Tian, Todorov ~~ Manetti, Goto ~~ Papayanov.
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Now we go back to the associative case.
For any V = V; € ker D, we want to find Vo € I'(L,v) s.t

(d?F)o(Va, Vi) + D(V,) = 0.
Since D is elliptic, self-adjoint and L is compact, we have
M(L,v) =ImD @ ker D : L% orthogonal decomposition.

Hence

Vi € ker D is unobstructed to second order (i.e. 3 V; as above.) <

(d?F)o(V4, V1) =

LF(eV)| L ker D.

° F(tVl)‘ is computed explicitly.

de2
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For V € ker D, we have

3
= 2 Z g(V, (e, g))e x ij V.

t=0 ij=1

d2 F(tV)

where Il is the second fundamental form of L in M.

F(tV) for any associative

@ More generally, we can describe dt2

submanifolds of a manifold with a G,- structure
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In my previous paper, | proved that all infinitesimal deformations of
homogeneous associative submanifolds (not contained in a totally
geodesic S°) except Az are unobstructed.

The properties of A3 = SU(2)
@ ker D = S5C2 @ S*C? @ S*C? :dimker D = 34.
@ The automorphism group Spin(7) induces 17-dim infinitesimal
deformations:

spin(7)/(su(2) @ Rj) — ker D.

(j : S3C? — S3C2:a structure map, which is a C-antilinear
SU(2)-equivariant map satisfying j2 = —1.)

@ We don't know whether the other infinitesimal deformations of a
34 — 17 = 17-dim subspace in ker D are unobstructed or not.
(Since A; does not arise from other known geometries, we can
not explain the deformations in terms of other geometries.)
= Then we study the second order deformations of As.
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All infinitesimal deformations of As are unobstructed to second order.

(Sketch of the proof:) Define an SU(2)-invariant map by
T :S?(kerD) @ ker D — R
| W> |
t=0 L2

ker D = S°C? @ S*C? @ S*C2& Clebsch-Gordan decomposition
= T=0.

(Vo V,W) = <j—;F(tV)

@ This theorem is not so strong because we do not decide whether
infinitesimal deformations of Az are unobstructed or not.
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Higher order deformations?

Since

L) =2 (@ (242)
=(d*F)v t)(d\(/jgt, dt))Jr(dF)V(t) (%)

we have to find V3 s.t.

S—;F(V(t)) = (d®F)o(V4, Vi, Vi) + 3(d?F)o(V4, Vo) + D(V3) = 0.

t=0

Kotaro Kawai (Gakushuin University (JapanSecond-order deformations of associative sul



(d*F)o(Va, Vi, Vi) 4 3(d?F)o(V4, Va) + D(V5) = 0.

@ The computation of 3rd order deformations seems to be very
hard.

o dimker D = 34 = dim S3(ker D) = ( 34 +33 -1 ) = 7140.

e For V = V; € ker D, the choice of V, is not unique.

@ For an associative submanifold L3 in a torsion-free G,-manifold,
Q*(L3,v) admits a structure of an L, algebra
([Fiorenza-Lé&-Schwachhofer-Vitagliano]).

e Can we apply this method to the case of A3?
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