Second-order deformations of associative submanifolds

Kotaro Kawai

Gakushuin University (Japan)

A 7-dimensional Riemannian manifold (M^7,g) said to have a nearly parallel G_2 -structure if its cone $(C(M^7),\overline{g})=(\mathbb{R}_{>0}\times M^7,dr^2+r^2g)$ has holonomy contained in $\mathrm{Spin}(7)$.

In this talk, we assume that $M^7 = S^7$ for simplicity.

A nearly parallel G_2 -structure $\varphi \in \Omega^3(S^7)$ on S^7 , which satisfies $d\varphi = 4 * \varphi$, is defined by the following.

$$\Phi = \frac{1}{2}\omega^2 + \mathrm{Re}\Omega, \qquad \varphi = i(\partial_r)\Phi|_{S^7}.$$

where $\omega = \frac{1}{2} \sum_{j=1}^4 dz^i \wedge d\bar{z}^i$, $\Omega = dz^1 \wedge \cdots \wedge dz^4$ are the standard Kähler form and the holomorphic volume form on $\mathbb{C}^4 \cong \mathbb{R}^8$. Define $\chi \in \Omega^3(S^7, TS^7)$ by

$$g(\chi(x,y,z),w)=*\varphi(x,y,z,w).$$

A 3-submanifold $L^3 \subset S^7$ is an associative submanifold if

$$\varphi|_{\mathcal{T}L} = \mathrm{vol}_L \Longleftrightarrow \Phi|_{\mathcal{T}C(L)} = \mathrm{vol}_{C(L)} \Longleftrightarrow \chi|_{\mathcal{T}L} = 0.$$

Recall:

$$\Phi = \frac{1}{2}\omega^2 + \mathrm{Re}\Omega, \qquad \varphi = i(\partial_r)\Phi|_{S^7}.$$

A 3-submanifold $L^3 \subset S^7$ is an associative submanifold if

$$\varphi|_{\mathit{TL}} = \mathrm{vol}_{\mathit{L}} \Longleftrightarrow \Phi|_{\mathit{TC(L)}} = \mathrm{vol}_{\mathit{C(L)}}.$$

Example (Examples of associative submanifolds)

- Some totally geodesic $S^3 \subset S^7$,
- Special Legendrian submanifolds,
- The pull back of holomorphic curves in $\mathbb{C}P^3$ via $S^7 \to \mathbb{C}P^3$.

Example (Examples of associative submanifolds)

- Some totally geodesic $S^3 \subset S^7$,
- Special Legendrian submanifolds,
- The pull back of holomorphic curves in $\mathbb{C}P^3$ via $S^7 \to \mathbb{C}P^3$.
- ([Lotay, Mashimo]) Classification of homogeneous associative submanifolds
- Lotay constructed an example (A_3) not arising from examples above.
 - $A_3 \cong SU(2)$ is a orbit of the irreducible SU(2) representation on $S^3\mathbb{C}^2 \cong \mathbb{C}^4 \cong \mathbb{R}^8$.
- Such examples (up to the Spin(7)-action) other than A_3 are not known.
- Can we get new examples having the same property by deforming A_3 ?

Deformation of associative submanifolds

Define the moduli space of associative submanifolds by

$$\mathcal{M} = \{L' \subset S^7: \text{ compact associative submanifolds}\}.$$

Fix $L^3 \in \mathcal{M}$. Let $\nu \to L$ be a normal bundle. Since exp : $\nu \to S^7$ is a diffeomorphism around the zero section, we have

$$\exp : \Gamma(L, \mathcal{U}) := \{\text{small sections of } \nu\} \cong \{\text{submanifolds near } L\}.$$

Define
$$F: \Gamma(L, \mathcal{U}) \to \Omega^3(L, \nu) \cong \Gamma(L, \nu)$$
 by

$$F(V) = "\phi_V"(\exp_V^*\chi).$$

(Here,
$$\exp_V : L \to M$$
, $\exp_V(x) = \exp_x(V_x)$.)

 $(\phi_V : \nu_V \to \nu)$ is a bundle isomorphism. We need this so that F takes values in $\Gamma(L, \nu)$.)

$$\exp_V(L)$$
 :associative $\Leftrightarrow F(V) = 0$ (:1st order nonlinear PDE).

$$\mathcal{M} \stackrel{\text{locally}}{\cong} F^{-1}(0).$$

Proposition (Mclean, Akbulut-Salur, Gayet)

Then a linearization of F at 0 is given by

$$D = (dF)_0 : \Gamma(L, \nu) \to \Omega^3(L, \nu) \cong \Gamma(L, \nu),$$

$$DV = \sum_{i=1}^{3} e_i \times \nabla_{e_i}^{\perp} V + V,$$

where $\{e_1, e_2, e_3\}$ is a local oriented orthonormal frame of TL s.t. $e_i = e_{i+1} \times e_{i+2} = \varphi(e_{i+1}, e_{i+2}, \cdot)^{\sharp}$ for $i \in \mathbb{Z}/3$, ∇^{\perp} is the connection on ν induced by the Levi-Civita connection ∇ of S^7 .

- \exists a rank 4 vector bundle $E \to M$ s.t. $\nu \cong \mathbb{S} \otimes_{\mathbb{H}} E$, where $\mathbb{S} \to M$ is a spinor bundle. Then $\sum_{i=1}^3 e_i \times \nabla_{e_i}^{\perp} V$ is a twisted Dirac operator.
- The space of infinitesimal associative deformations of L (= $\ker D$) is a (-1)-eingenspace of a twisted Dirac operator.

Proposition (Mclean, Akbulut-Salur, Gayet)

Then a linearization of F at 0 is given by

$$D = (dF)_0 : \Gamma(L, \nu) \to \Omega^3(L, \nu) \cong \Gamma(L, \nu),$$

$$DV = \sum_{i=1}^{3} e_i \times \nabla_{e_i}^{\perp} V + V,$$

where $\{e_1, e_2, e_3\}$ is a local oriented orthonormal frame of TL s.t. $e_i = e_{i+1} \times e_{i+2} = \varphi(e_{i+1}, e_{i+2}, \cdot)^{\sharp}$ for $i \in \mathbb{Z}/3$, ∇^{\perp} is the connection on ν induced by the Levi-Civita connection ∇ of S^7 .

- D is elliptic.
- D is self-adjoint $\Rightarrow \ker D = \operatorname{Coker} D$.

The standard technique to prove the smoothness of a moduli space is an implicit function theorem (cf. [McLean]).

But in our case, D is surjective iff dim ker D = 0.

Strategy

So that $F^{-1}(0)$ is smooth, the following must hold.

$$\forall V \in \ker D, \exists \{V(t)\}_{t \in (-\epsilon, \epsilon)} \subset \Gamma(L, \nu) \text{ s.t.}$$

$$F(V(t)) = 0$$
 and $V(0) = 0$, $\frac{d}{dt}V(t)\Big|_{t=0} = V$.

 $V \in \ker D$: unobstructed $\stackrel{def}{\Leftrightarrow} \exists \{V(t)\}$ as above.

How to check: Consider a formal power series expansion w.r.t. t

$$V(t) = \sum_{k=1}^{\infty} V_k t^k / k! \qquad (V_k \in \Gamma(L, \nu)).$$

Then decide V_k so that F(V(t)) = 0.

$$0 = \frac{d^2}{dt^2} F(V(t)) \bigg|_{t=0} = \frac{d}{dt} \left((dF)_{V(t)} \left(\frac{dV(t)}{dt} \right) \right) \bigg|_{t=0}$$

= $(d^2 F)_0 (V_1, V_1) + D(V_2).$

Thus if $(d^2F)_0(V_1, V_1) \in \operatorname{Im} D$, $V = V_1$ is not unobstructed. We can repeat this process. If it stops for some k, V is not unobstructed.

This idea is used for deformations of many geometric problems.

Example

- All infinitesimal deformations of the following are not unobstructed to second order.
 - Einstein metrics on $\mathbb{C}P^{2l} \times S^2(l \geq 2)$ ([Koiso]),
 - nearly Kähler structures on $SU(3)/T^2$ ([Foscolo]).
- All infinitesimal deformations of harmonic maps $T^2 \to S^3$ are not unobstructed to third order ([Mukai]).
- All infinitesimal deformations of complex structures on a Calabi-Yau manifold are unobstructed ([Tian, Todorov]).

Remark

- When we cannot use the implicit function theorem, it is rare that all infinitesimal deformations are unobstructed.
 - → The result of Tian, Todorov is surprising.
 - → This was generalized by Goto ("The geometric structures defined by closed differential forms").
- The infinitesimal deformations of the normal homogeneous nearly parallel G_2 -manifolds are studied by [Alexandrov-Semmelmann]. Nearly parallel G_2 -manifolds are all rigid except for the Aloff-Wallach manifold SU(3)/U(1), which admits an 8-dimensional infinitesimal deformations. It is an open problem whether these infinitesimal deformations are unobstructed or not.
- The more general deformation theory in terms of $DGLA(Differential\ graded\ Lie\ algebra)$ (or L_{∞} algebra): Tian, Todorov \leadsto Manetti, Goto \leadsto Papayanov.

Now we go back to the associative case.

For any $V = V_1 \in \ker D$, we want to find $V_2 \in \Gamma(L, \nu)$ s.t.

$$(d^2F)_0(V_1, V_1) + D(V_2) = 0.$$

Since D is elliptic, self-adjoint and L is compact, we have

$$\Gamma(L,\nu)={\rm Im}D\oplus \ker D$$
 : L^2 orthogonal decomposition.

Hence

Lemma

 $V_1 \in \ker D$ is unobstructed to second order (i.e. $\exists V_2$ as above.) \Leftrightarrow $(d^2F)_0(V_1, V_1) = \frac{d^2}{dt^2}F(tV_1)\Big|_{t=0} \perp_{L^2} \ker D$.

• $\frac{d^2}{dt^2}F(tV_1)\Big|_{t=0}$ is computed explicitly.

ロト 4周ト 4 章 ト 4 章 ト 章 めなべ

Proposition

For $V \in \ker D$, we have

$$\left. \frac{d^2}{dt^2} F(tV) \right|_{t=0} = 2 \sum_{i,j=1}^3 g(V, II(e_i, e_j)) e_i \times \nabla_{e_j}^{\perp} V.$$

where II is the second fundamental form of L in M.

• More generally, we can describe $\frac{d^2}{dt^2}F(tV)\Big|_{t=0}$ for any associative submanifolds of a manifold with a G_2 -structure.

In my previous paper, I proved that all infinitesimal deformations of homogeneous associative submanifolds (not contained in a totally geodesic S^6) except A_3 are unobstructed.

The properties of $A_3 \cong SU(2)$

- $\ker D \cong S^6 \mathbb{C}^2 \oplus S^4 \mathbb{C}^2 \oplus S^4 \mathbb{C}^2$: $\dim \ker D = 34$.
- The automorphism group Spin(7) induces 17-dim infinitesimal deformations:

$$\mathfrak{spin}(7)/(\mathfrak{su}(2)\oplus \mathbb{R}j)\hookrightarrow \ker D.$$

- $(j: S^3\mathbb{C}^2 \to S^3\mathbb{C}^2)$:a structure map, which is a \mathbb{C} -antilinear $\mathrm{SU}(2)$ -equivariant map satisfying $j^2=-1$.)
- We don't know whether the other infinitesimal deformations of a 34-17=17-dim subspace in ker D are unobstructed or not. (Since A_3 does not arise from other known geometries, we can not explain the deformations in terms of other geometries.)

Theorem (K.)

All infinitesimal deformations of A_3 are unobstructed to second order.

(Sketch of the proof:) Define an $\mathrm{SU}(2)$ -invariant map by $T:S^2(\ker D)\otimes\ker D\to\mathbb{R}$

$$T(V \odot V, W) = \left\langle \frac{d^2}{dt^2} F(tV) \Big|_{t=0}, W \right\rangle_{L^2}.$$

 $\ker D \cong S^6\mathbb{C}^2 \oplus S^4\mathbb{C}^2 \oplus S^4\mathbb{C}^2$ Clebsch-Gordan decomposition $\Rightarrow T \equiv 0$.

Remark

• This theorem is not so strong because we do not decide whether infinitesimal deformations of A_3 are unobstructed or not.

Higher order deformations?

Since

$$\begin{aligned} \frac{d^2}{dt^2} F(V(t)) &= \frac{d}{dt} \left((dF)_{V(t)} \left(\frac{dV(t)}{dt} \right) \right) \\ &= (d^2 F)_{V(t)} \left(\frac{dV(t)}{dt}, \frac{dV(t)}{dt} \right) + (dF)_{V(t)} \left(\frac{d^2 V(t)}{dt^2} \right), \end{aligned}$$

we have to find V_3 s.t.

$$\frac{d^3}{dt^3}F(V(t))\bigg|_{t=0}=(d^3F)_0(V_1,V_1,V_1)+3(d^2F)_0(V_1,V_2)+D(V_3)=0.$$

$$(d^3F)_0(V_1, V_1, V_1) + 3(d^2F)_0(V_1, V_2) + D(V_3) = 0.$$

- The computation of 3rd order deformations seems to be very hard.
 - dim ker $D = 34 \Rightarrow \dim S^3(\ker D) = \begin{pmatrix} 34 + 3 1 \\ 3 \end{pmatrix} = 7140.$
 - For $V = V_1 \in \ker D$, the choice of V_2 is not unique.
- For an associative submanifold L^3 in a torsion-free G_2 -manifold, $\Omega^*(L^3, \nu)$ admits a structure of an L_∞ algebra ([Fiorenza-Lê-Schwachhöfer-Vitagliano]).
 - Can we apply this method to the case of A_3 ?