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Topics in Talk

Bundle—valued Dirac operators T
Representations of compact groups: Highest weights
Realization on kernels of Dirac operators
Representations of semisimple Lie groups: characters

bbbbbT

Representations of semisimple Lie groups: discrete
series

°

Realization on kernels of Dirac operators

°

Measurable families of Dirac operators

# Representations of semisimple Lie groups: tempered
series

# Realization on kernels of partial Dirac operators

o |
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Spinors
i E = R" with pos. def. inner product (u, v), 0.n. basis {e;} T
» Clifford algebra CU(E): gen. e;, rel. e; - ej +e; - e; = d;
® CIT(E)= Span{e;, ...e; },i1 < - <ip, (—=1)F = +1
® 1 — zdefinedbye;, ...e;, = (=1)%e;, ... e
® Spin(E) = Spin(n) ={x € C{T(E) |z-2=1,2-E-T=FE}
® vectorrepis v: Spin(n) —» SO(n) by v(z)e=x-e- 2
# left multiplication ¢(-) of Spin(n) on C{(E)¢
® if n =2m + 1then ¢ =2""1s, s spinrep, space S, dim 2™

® if n =2mthen {=2"s,s =s" @ s~ spin and half-spin
reps, rep spaces S = ST @ S, dim §F = 2m~!

u if n = 2m Clifford mult defines maps m* : Ec ® ST — ST J
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Riemannian Spin Bundles
i Y: oriented n—dimensional riemannian manifold
® [ — Y: oriented orthonormal frame bundle

»® Assume: Y is spin, i.e. the principal SO(n)-bundle F lifts
to a principal Spin(n)—bundle F — Y.

» Let U be a closed subgroup of Spin(n) and Fy — Y the
principal U—sub-bundle of F — Y with structure group U.

# 4 finite dim unitary rep of U, representation space V,,,
hermitian vector bundle V,, — Y associated to Iy by

® cases S =V, and ST = V,=: spin and half-spin bundles

® casesS®V, — Y and (forneven) ST®@V, = Y:
bundles of V,,—valued spinors

e inner products on sections: (¢, ) = [, (¢, 1),

-

|

-p. 4



Bundle-valued Dirac Operators

L>(Y;S ®V,): square integrable V ,—valued spinors

Now assume n = 2m even: then
LaY;S®V,) = La(Y;STeV,)® L(Y;S™ @ V,)

T — Y: complexified tang bundle, T* — Y cotang bundle

covariant differentials:

VEO®(Y;STeV,) - C®(Y;T* ST @ V,) and
V=VT4+V :C®Y;S@V,) - C*Y;T*®S®V,)
Clifford mult: m*: T®ST* =STandm:T®S — S

Dirac operators: D = D™ @& D~ where
D¥F=(m*®1)oV*:C®(Y;S*®V,) = C®(Y;STeV,)

In a moving orthonormal frame on an open subset of Y':
Do =3 1<j<p € Ve; ()

-

|

-p.5



Square Integrable Harmonic Spinors

E D is an elliptic operator on Lz(Y;S® V) T
# D has dense domain C°(Y;S® V)
# On that domain, D is symmetric
»# If Y is complete then D and D? are essentially self adjoint
® i.e. closures D = D* and D? = (D?)*, so

» those are the unigque self—adjoint extensions
» and they have well defined spectral decompositions

» their kernelis Hy(Y;V,) ={¢p € L2(Y;S®V,) | D¢ = 0}:
square integrable V,,—valued spinors

® Hy(Y;V,)closedin Ly(Y;S®V,), CC®(Y;S®V,),Is
orthogonal sum Hy(Y;V,) = HF (Y;V,) ® H; (Y;V,)
o where H3(Y;V,) = {6 € Lo(Y;S®V,) | D¢ = 0} »
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Homogeneous Spin Bundles

. N

Y = G/K: homogeneous riemannian spin manifold:
Isotropy representation K — SO(n) lifts to K — Spin(n)

# 4 unitary representation of K on vector space V,,
® V, — Y: corresp G-homog. hermitian vector bundle

# The natural action of G on Ly(Y;V,) Is continuous and
defines a unitary representation of G

® The Dirac operator D (and D¥ if n is even) is invariant

# The natural action of G on Hy(Y;V,) (resp. H>(Y;V,)) is
a unitary representation , (resp. ;) of G

» Now we will assume n = 2m even, and will look at the
structure of G and Ly(G) in terms of the w7 . The first step
L uses square integrable representations. J
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Square Integrable Representations
.

® 7 € G irreducible unitary representation
» if u,v € H, then the coefficient f, ,(g) = (u, 7(g)v)

#® These are equivalent:
s There exist nonzero u,v € H, with | f,.| € L*(G/Z).
o |fun] € L*(G/Z) for all u,v € H,.
s 7 is a discrete summand of Ind & (yx).

-

(G I1s a separable locally compact group, center Z

® 7 IS square integrable (mod Z) if | f,.,| € L2(G/Z) for some
u # 0 # v,

# Then the formal degree degn > 0, is defined by
fg/Z Juw (x)fu’,v’(x)d:uG/Z(xZ) — delgw (u, u,> (v, ')




EKxamples

N N

# |f G is compact then every 7 € G is square integrable

# If G is the universal covering group of U(n) then
s Its center Z = 7Z and G//Z is compact

s every 7 € G is square integrable mod Z

® IfG=SU(1,1)actingon B={z€ C||z| <1} by linear
fractional transformations, and . — B Is a negative
G—homogeneous holomorphic line bundle,

» then the natural action of G on HY(B; O(L)) is an infinite
dimensional square integrable representation

# |f G is the Heisenberg group of dimension 2n + 1 then the
Fock representations (on Hermite polynomials on C") are
L square integrable (mod the center).

|
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Semisimple Group Characters

-

# (G connected real semisimple (or reductive) Lie group

® 7 € G: has three sorts of characters
s central character (;: 7(gz) = ((2)n(g) for z € Zg

s infinitesimal character: dn(Z) = x-(Z) for = € Z(g)
center of the enveloping algebra of U/(g)

o distribution character (which specifies 7):
Or(f) = trace |, f(x)n(x)dx for f € CZ(G)

8 If=e Z(g) then 2(0,) = xx(2)O;
» Elliptic regularity ©, is C* on the regular setin G’ ¢ G
r codim(G \ G') 2 2 and ©, has only finite jumps on G \ G’
= Jo f( r)dxr where T, € C*(G’) satisfies
L :(T) Y~ ()T, forall 2 € Z(g)

-
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Discrete Series I

E GG: semisimple Lie group w/ compact Cartan subgroup T T
#® K C G max compact subgroup, g =¢+p, with K O T
® A4 roots; Ay compact roots, A¢, noncompact roots,

r WA

—+ =+ 4 1 B
(gr Depr Dy POSILIVE TOOLS, po = 5>, | V5 pg = pe+ py
t,o

® W =Wy, Weyl group, W' = {w e W | Af, Cw(A,)}

o F,= all A € it* such that
s ¢* e T with (A + py, ) # 0for o € Ay, and g(\) = #pos
s A+ pp is K—dominant, i.e. (A + pp,a) > 0 for a € Af,

® )\ € Fy: mayp, I8 the unique square integrable rep. of G
with distribution character given on 7' G’ by

v det(w)er T Po (z
\_ T7T>\+pg (CE‘) — (_1)q(>\+Pg) %AJr (e(aze_a)(;)) J

t,g




Discrete Series 11

D The discrete series G 4. consists all equivalence classes T
of square integrable representations of G

® \— 7y, defines a bijection Fj <+ Gyjs.

» Given X\ € F: piry,, rep of K, highestwt A + p,, on V.

s recall Hy(G/K;V,,,,): square integrable harmonic
spinors with values in VMpp and m,,,, rep of G there

s Hy (G/K;Vy,,)and rZ : half spin summands

KXx+pp
® Let j()\) be the sign + of (—1)9(A\ re)
» Theorem of Parthasrathy (slightly improved):
If A € 7 then (1) HJ(G/K;Vyy,,) =0 forj £ j()\) and (2)
the representation w{f” of G on HJ (G/K; Vs, ) is the

A+

L discrete series representation . J

Atpg
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Harish-Chandra Theory I

F Cayley transform between conj classes of Cartan subalg T
of g defines cascade from max. compact Cartan subalg.
to max. noncompact Cartan subalg., defines ordering >~

® H=TxA=0H: cuspidal parabolic P = M AN and fibr
p: X =G/UAN — G/MAN = K/U
9 Cartan involutionof G, K = G and T CSAiInU = M NK
® H-series: {m, = Ind$(y ® e) | v € My and o € a*}
® (', subset of reg set G’ of elements conj Cartan J >~ H

» Given 7., in the H—series Gy
» infinitesimal character x», ., = Xy+pulzo

» distribution character ©,__, concentrated in | ;. ,; G';,
determined by restriction to G’ , given there by an

L explicit integral formula J
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Harish-Chandra Theory 11
-

® Car(G): set of all conj classes of Cartan subgroups of G

® Gremp = Upecar) Gr:  all the tempered reps of G

# Plancherel measure on G is concentrated on Giepmy

o There is an explicit Plancherel formula for Schwartz class
functions.

# However it is somewhat complicated in its dependence
on the detailed structure of G. A relatively short argument
and statement can be found in
math.berkeley.edu/(tilde)jawolf/publications.pdf/paper 103.pdf

® If G is compact then Gyemp = G = G, so the Plancherel
Theorem is just the Peter-Weyl Theorem.

o |
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Partially Harmonic Spinors

F Recall H =T x A: 6—stable Cartan subgroup of G, T
P = M AN associated cuspidal parabolic subgroup of G,
andp: X =G/UAN — G/M AN = K/U fibration with
riemannian symmetric fioer M /U where U = M N K.

# On each fiber, apply the realization of discrete series
representations by harmonic spinors

# This can be done so that the spaces of bundle valued
spinors vary measurably between fibers

# These fit together as spaces of square integrable partially
harmonic spinors, fK/U Hg(k)(MA/UA; Vi pmn JA(EU)

o Comparing with the construction of induced

representations, the H—series representations are
realized on those spaces of square integrable partially

L harmonic spinors J
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Possible Extension to Nilmanifolds

. N

N': connected simply connected nilpotent Lie group,
center Z

® Suppose that NV has representations that are square
integrable mod Z

» Then the square integrable reps 7, are specified by
central character ¢}, X € 3*, and the Plancherel density is
a certain polynomial in \

# |n this square integrable case, express 7 as rep of G on
square integrable harmonic spinors

# Starting point: the case of the (generalized) Heisenberg
group ImF + F™ where F = C,H or O

o |
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