Dirac operators and representations of Lie groups

"Dirac Operators in Differential Geometry and Global Analysis"

Conference in memory of Thomas Friedrich
Bedlewo, 6-12 October 2019
Joseph A. Wolf
University of California at Berkeley

Topics in Talk

- Bundle-valued Dirac operators
- Representations of compact groups: Highest weights
- Realization on kernels of Dirac operators
- Representations of semisimple Lie groups: characters
- Representations of semisimple Lie groups: discrete series
- Realization on kernels of Dirac operators
- Measurable families of Dirac operators
- Representations of semisimple Lie groups: tempered series
- Realization on kernels of partial Dirac operators

Spinors

- $E=\mathbb{R}^{n}$ with pos. def. inner product $\langle u, v\rangle$, o.n. basis $\left\{e_{i}\right\}$
- Clifford algebra $C \ell(E)$: gen. e_{i}, rel. $e_{i} \cdot e_{j}+e_{j} \cdot e_{i}=\delta_{i, j}$
- $C \ell^{ \pm}(E)=\operatorname{Span}\left\{e_{i_{1}} \ldots e_{i_{k}}\right\}, i_{1}<\cdots<i_{k},(-1)^{k}= \pm 1$
- $x \mapsto \bar{x}$ defined by $e_{i_{1}} \ldots e_{i_{k}} \mapsto(-1)^{k} e_{i_{k}} \ldots e_{i_{1}}$
- $\operatorname{Spin}(E)=\operatorname{Spin}(n)=\left\{x \in C \ell^{+}(E) \mid x \cdot \bar{x}=1, x \cdot E \cdot \bar{x}=E\right\}$
- vector rep is $v: \operatorname{Spin}(n) \rightarrow S O(n)$ by $v(x) e=x \cdot e \cdot \bar{x}$
- left multiplication $\ell(\cdot)$ of $\operatorname{Spin}(n)$ on $C \ell(E)_{C}$
- if $n=2 m+1$ then $\ell=2^{m+1} s, s$ spin rep, space S, $\operatorname{dim} 2^{m}$
- if $n=2 m$ then $\ell=2^{m} s, s=s^{+} \oplus s^{-}$spin and half-spin reps, rep spaces $S=S^{+} \oplus S^{-}, \operatorname{dim} S^{ \pm}=2^{m-1}$
- if $n=2 m$ Clifford mult defines maps $m^{ \pm}: E_{C} \otimes S^{ \pm} \rightarrow S^{\mp}$

Riemannian Spin Bundles

- Y : oriented n-dimensional riemannian manifold
- $\mathbb{F} \rightarrow Y$: oriented orthonormal frame bundle
- Assume: Y is spin, i.e. the principal $S O(n)$-bundle \mathbb{F} lifts to a principal $\operatorname{Spin}(n)$-bundle $\widetilde{\mathbb{F}} \rightarrow Y$.
- Let U be a closed subgroup of $\operatorname{Spin}(n)$ and $\mathbb{F}_{U} \rightarrow Y$ the principal U-sub-bundle of $\widetilde{\mathbb{F}} \rightarrow Y$ with structure group U.
- μ : finite dim unitary rep of U, representation space V_{μ}, hermitian vector bundle $\mathbb{V}_{\mu} \rightarrow Y$ associated to \mathbb{F}_{U} by μ
- cases $\mathbb{S}=\mathbb{V}_{s}$ and $\mathbb{S}^{ \pm}=\mathbb{V}_{s^{ \pm}}$: spin and half-spin bundles
- cases $\mathbb{S} \otimes \mathbb{V}_{\mu} \rightarrow Y$ and (for n even) $\mathbb{S}^{ \pm} \otimes \mathbb{V}_{\mu} \rightarrow Y$: bundles of \mathbb{V}_{μ}-valued spinors
- inner products on sections: $\langle\phi, \psi\rangle=\int_{Y}\langle\phi, \psi\rangle_{y} d y$

Bundle-valued Dirac Operators

- $L_{2}\left(Y ; \mathbb{S} \otimes \mathbb{V}_{\mu}\right)$: square integrable \mathbb{V}_{μ}-valued spinors
- Now assume $n=2 m$ even: then
$L_{2}\left(Y ; \mathbb{S} \otimes \mathbb{V}_{\mu}\right)=L_{2}\left(Y ; \mathbb{S}^{+} \otimes \mathbb{V}_{\mu}\right) \oplus L_{2}\left(Y ; \mathbb{S}^{-} \otimes \mathbb{V}_{\mu}\right)$
- $\mathbb{T} \rightarrow Y$: complexified tang bundle, $\mathbb{T}^{*} \rightarrow Y$ cotang bundle
- covariant differentials:

$$
\begin{aligned}
& \nabla^{ \pm}: C^{\infty}\left(Y ; \mathbb{S}^{ \pm} \otimes \mathbb{V}_{\mu}\right) \rightarrow C^{\infty}\left(Y ; \mathbb{T}^{*} \otimes \mathbb{S}^{ \pm} \otimes \mathbb{V}_{\mu}\right) \text { and } \\
& \nabla=\nabla^{+}+\nabla^{-}: C^{\infty}\left(Y ; \mathbb{S} \otimes \mathbb{V}_{\mu}\right) \rightarrow C^{\infty}\left(Y ; \mathbb{T}^{*} \otimes \mathbb{S} \otimes \mathbb{V}_{\mu}\right)
\end{aligned}
$$

- Clifford mult: $m^{ \pm}: \mathbb{T} \otimes \mathbb{S}^{ \pm} \rightarrow \mathbb{S}^{\mp}$ and $m: \mathbb{T} \otimes \mathbb{S} \rightarrow \mathbb{S}$
- Dirac operators: $D=D^{+} \oplus D^{-}$where $D^{ \pm}=\left(m^{ \pm} \otimes 1\right) \circ \nabla^{ \pm}: C^{\infty}\left(Y ; \mathbb{S}^{ \pm} \otimes \mathbb{V}_{\mu}\right) \rightarrow C^{\infty}\left(Y ; \mathbb{S}^{\mp} \otimes \mathbb{V}_{\mu}\right)$
- In a moving orthonormal frame on an open subset of Y :

$$
D \phi=\sum_{1 \leqq j \leqq n} e_{j} \cdot \nabla_{e_{j}}(\phi)
$$

Square Integrable Harmonic Spinors

- D is an elliptic operator on $L_{2}\left(Y ; \mathbb{S} \otimes \mathbb{V}_{\mu}\right)$
- D has dense domain $C_{c}^{\infty}\left(Y ; \mathbb{S} \otimes \mathbb{V}_{\mu}\right)$
- On that domain, D is symmetric
- If Y is complete then D and D^{2} are essentially self adjoint
- i.e. closures $\widetilde{D}=D^{*}$ and $\widetilde{D^{2}}=\left(D^{2}\right)^{*}$, so
- those are the unique self-adjoint extensions
- and they have well defined spectral decompositions
- their kernel is $H_{2}\left(Y ; \mathbb{V}_{\mu}\right)=\left\{\phi \in L_{2}\left(Y ; \mathbb{S} \otimes \mathbb{V}_{\mu}\right) \mid D \phi=0\right\}$: square integrable \mathbb{V}_{μ}-valued spinors
- $H_{2}\left(Y ; \mathbb{V}_{\mu}\right)$ closed in $L_{2}\left(Y ; \mathbb{S} \otimes \mathbb{V}_{\mu}\right), \subset C^{\infty}\left(Y ; \mathbb{S} \otimes \mathbb{V}_{\mu}\right)$, is orthogonal sum $H_{2}\left(Y ; \mathbb{V}_{\mu}\right)=H_{2}^{+}\left(Y ; \mathbb{V}_{\mu}\right) \oplus H_{2}^{-}\left(Y ; \mathbb{V}_{\mu}\right)$ where $H_{2}^{ \pm}\left(Y ; \mathbb{V}_{\mu}\right)=\left\{\phi \in L_{2}\left(Y ; \mathbb{S} \otimes \mathbb{V}_{\mu}\right) \mid D^{ \pm} \phi=0\right\}$

Homogeneous Spin Bundles

- $Y=G / K$: homogeneous riemannian spin manifold: isotropy representation $K \rightarrow S O(n)$ lifts to $K \rightarrow \operatorname{Spin}(n)$
- μ : unitary representation of K on vector space V_{μ}
- $\mathbb{V}_{\mu} \rightarrow Y$: corresp G-homog. hermitian vector bundle
- The natural action of G on $L_{2}\left(Y ; \mathbb{V}_{\mu}\right)$ is continuous and defines a unitary representation of G
- The Dirac operator D (and $D^{ \pm}$if n is even) is invariant
- The natural action of G on $H_{2}\left(Y ; \mathbb{V}_{\mu}\right)\left(\right.$ resp. $\left.H_{2}^{ \pm}\left(Y ; \mathbb{V}_{\mu}\right)\right)$ is a unitary representation π_{μ} (resp. $\pi_{\mu}^{ \pm}$) of G
- Now we will assume $n=2 m$ even, and will look at the structure of \widehat{G} and $L_{2}(G)$ in terms of the $\pi_{\mu}^{ \pm}$. The first step uses square integrable representations.

Square Integrable Representations

- G is a separable locally compact group, center Z
- $\pi \in \widehat{G}$ irreducible unitary representation
- if $u, v \in \mathcal{H}_{\pi}$ then the coefficient $f_{u, v}(g)=\langle u, \pi(g) v\rangle$
- These are equivalent:
- There exist nonzero $u, v \in \mathcal{H}_{\pi}$ with $\left|f_{u, v}\right| \in L^{2}(G / Z)$.
- $\left|f_{u, v}\right| \in L^{2}(G / Z)$ for all $u, v \in \mathcal{H}_{\pi}$.
- π is a discrete summand of $\operatorname{Ind}_{Z}^{G}\left(\chi_{\pi}\right)$.
- π is square integrable $(\bmod Z)$ if $\left|f_{u, v}\right| \in L_{2}(G / Z)$ for some $u \neq 0 \neq v$.
- Then the formal degree $\operatorname{deg} \pi>0$, is defined by

$$
\int_{G / Z} f_{u, v}(x) \overline{f_{u^{\prime}, v^{\prime}}(x)} d \mu_{G / Z}(x Z)=\frac{1}{\operatorname{deg} \pi}\left\langle u, u^{\prime}\right\rangle \overline{\left\langle v, v^{\prime}\right\rangle}
$$

Examples

- If G is compact then every $\pi \in \widehat{G}$ is square integrable
- If G is the universal covering group of $U(n)$ then
- its center $Z \cong \mathbb{Z}$ and G / Z is compact
- every $\pi \in \widehat{G}$ is square integrable $\bmod Z$
- If $G=S U(1,1)$ acting on $B=\{z \in \mathbb{C}| | z \mid<1\}$ by linear fractional transformations, and $\mathbb{L} \rightarrow B$ is a negative G-homogeneous holomorphic line bundle,
- then the natural action of G on $H_{2}^{0}(B ; \mathcal{O}(\mathbb{L}))$ is an infinite dimensional square integrable representation
- If G is the Heisenberg group of dimension $2 n+1$ then the Fock representations (on Hermite polynomials on \mathbb{C}^{n}) are square integrable (mod the center).

Semisimple Group Characters

- G connected real semisimple (or reductive) Lie group
- $\pi \in \widehat{G}$: has three sorts of characters
- central character $\zeta_{\pi}: \pi(g z)=\zeta_{\pi}(z) \pi(g)$ for $z \in Z_{G}$
- infinitesimal character: $d \pi(\Xi)=\chi_{\pi}(\Xi)$ for $\Xi \in \mathcal{Z}(\mathfrak{g})$ center of the enveloping algebra of $\mathcal{U}(\mathfrak{g})$
- distribution character (which specifies π):

$$
\Theta_{\pi}(f)=\operatorname{trace} \int_{G} f(x) \pi(x) d x \text { for } f \in C_{c}^{\infty}(G)
$$

- If $\Xi \in \mathcal{Z}(\mathfrak{g})$ then $\Xi\left(\Theta_{\pi}\right)=\chi_{\pi}(\Xi) \Theta_{\pi}$
- Elliptic regularity Θ_{π} is C^{∞} on the regular set in $G^{\prime} \subset G$
- $\operatorname{codim}\left(G \backslash G^{\prime}\right) \geqq 2$ and Θ_{π} has only finite jumps on $G \backslash G^{\prime}$
- $\Theta_{\pi}(f)=\int_{G} f(x) T_{\pi}(x) d x$ where $T_{\pi} \in C^{\infty}\left(G^{\prime}\right)$ satisfies

$$
\Xi\left(T_{\pi}\right)=\chi_{\pi}(\Xi) T_{\pi} \text { for all } \Xi \in \mathcal{Z}(\mathfrak{g})
$$

Discrete Series I

- G : semisimple Lie group w/ compact Cartan subgroup T
- $K \subset G$ max compact subgroup, $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$, with $K \supset T$
- $\Delta_{t, \mathfrak{g}}$ roots; $\Delta_{t, \mathfrak{e}}$ compact roots, $\Delta_{\mathfrak{t}, \mathfrak{p}}$ noncompact roots,
- $\Delta_{\mathfrak{t}, \mathfrak{g}}^{+}, \Delta_{\mathfrak{t}, \mathfrak{e}}^{+}, \Delta_{\mathfrak{t}, \mathfrak{p}}^{+}$positive roots, $\rho_{\bullet}=\frac{1}{2} \sum_{\Delta_{\mathrm{t}, \boldsymbol{\bullet}}^{+}} \nu, \rho_{\mathfrak{g}}=\rho_{\mathfrak{k}}+\rho_{\mathfrak{p}}$
- $W=W_{t, \mathfrak{g}}$ Weyl group, $W^{1}=\left\{w \in W \mid \Delta_{\mathfrak{t}, \mathfrak{e}}^{+} \subset w\left(\Delta_{\mathfrak{t}, \mathfrak{g}}^{+}\right)\right\}$
- $\mathcal{F}_{0}^{\prime}=$ all $\lambda \in i t^{*}$ such that
- $e^{\lambda} \in \widehat{T}$ with $\left\langle\lambda+\rho_{\mathfrak{p}}, \alpha\right\rangle \neq 0$ for $\alpha \in \Delta_{\mathfrak{t}, \mathfrak{p}}$ and $q(\lambda)=\#$ pos
- $\lambda+\rho_{\mathfrak{p}}$ is K-dominant, i.e. $\left\langle\lambda+\rho_{\mathfrak{p}}, \alpha\right\rangle>0$ for $\alpha \in \Delta_{\mathfrak{t}, \mathfrak{e}}^{+}$
- $\lambda \in \mathcal{F}_{0}^{\prime}: \pi_{\lambda+\rho_{\mathrm{g}}}$ is the unique square integrable rep. of G with distribution character given on $T \cap G^{\prime}$ by

$$
T_{\pi_{\lambda+\rho_{\mathfrak{g}}}}(x)=(-1)^{q\left(\lambda+\rho_{\mathfrak{g}}\right)} \frac{\sum_{W} \operatorname{det}(w) e^{\lambda+\rho_{\mathfrak{g}}}(x)}{\prod_{\Delta_{\mathfrak{t}, \mathfrak{g}}}^{+}\left(e^{\alpha}-e^{-\alpha}\right)(x)}
$$

Discrete Series II

- The discrete series $\widehat{G}_{\text {disc }}$ consists all equivalence classes of square integrable representations of G
- $\lambda \mapsto \pi_{\lambda+\rho_{\mathrm{g}}}$ defines a bijection $\mathcal{F}_{0}^{\prime} \leftrightarrow \widehat{G}_{d i s c}$
- Given $\lambda \in \mathcal{F}_{0}^{\prime}: \mu_{\lambda+\rho_{\mathfrak{p}}}$ rep of K, highest wt $\lambda+\rho_{\mathfrak{p}}$, on $V_{\lambda+\rho_{\mathfrak{p}}}$ - recall $H_{2}\left(G / K ; \mathbb{V}_{\lambda+\rho_{\mathrm{p}}}\right)$: square integrable harmonic spinors with values in $\mathbb{V}_{\lambda+\rho_{\mathrm{p}}}$ and $\pi_{\mu_{\lambda+\rho_{\mathrm{p}}}}$ rep of G there
- $H_{2}^{ \pm}\left(G / K ; \mathbb{V}_{\lambda+\rho_{p}}\right)$ and $\pi_{\mu_{\lambda+\rho p}}^{ \pm}$: half spin summands
- Let $j(\lambda)$ be the sign \pm of $(-1)^{q\left(\lambda+\rho_{\mathfrak{g}}\right)}$
- Theorem of Parthasrathy (slightly improved): If $\lambda \in \mathcal{F}_{0}^{\prime}$ then (1) $H_{2}^{j}\left(G / K ; \mathbb{V}_{\lambda+\rho_{\mathrm{p}}}\right)=0$ for $j \neq j(\lambda)$ and (2) the representation $\pi_{\mu \lambda+\rho_{\mathfrak{p}}}^{j(\lambda)}$ of G on $H_{2}^{j(\lambda)}\left(G / K ; \mathbb{V}_{\lambda+\rho_{\mathfrak{p}}}\right)$ is the discrete series representation $\pi_{\mu_{\lambda+\rho}}^{j(\lambda)}$

Harish-Chandra Theory I

- Cayley transform between conj classes of Cartan subalg of \mathfrak{g} defines cascade from max. compact Cartan subalg. to max. noncompact Cartan subalg., defines ordering \succ
- $H=T \times A=\theta H$: cuspidal parabolic $P=M A N$ and fibr

$$
p: X=G / U A N \rightarrow G / M A N=K / U
$$

θ Cartan involution of $G, K=G^{\theta}$ and T CSA in $U=M \cap K$

- H-series: $\left\{\pi_{\gamma, \sigma}=\operatorname{Ind}_{P}^{G}\left(\gamma \otimes e^{i \sigma}\right) \mid \gamma \in \widehat{M}_{\text {disc }}\right.$ and $\left.\sigma \in \mathfrak{a}^{*}\right\}$
- G_{H}^{\prime} : subset of reg set G^{\prime} of elements conj Cartan $J \succ H$
- Given $\pi_{\gamma, \sigma}$ in the H-series \widehat{G}_{H} :
- infinitesimal character $\chi_{\pi_{\gamma, \sigma}}=\left.\chi_{\gamma+\rho_{m}}\right|_{Z_{G}}$
- distribution character $\Theta_{\pi_{\gamma, \sigma},}$, concentrated in $\bigcup_{J \succ H} G_{J}^{\prime}$, determined by restriction to G_{H}^{\prime}, given there by an explicit integral formula

Harish-Chandra Theory II

- $\operatorname{Car}(G)$: set of all conj classes of Cartan subgroups of G
- $\widehat{G}_{\text {temp }}:=\bigcup_{H \in \operatorname{Car}(G)} \widehat{G}_{H}:$ all the tempered reps of G
- Plancherel measure on \widehat{G} is concentrated on $\widehat{G}_{\text {temp }}$
- There is an explicit Plancherel formula for Schwartz class functions.
- However it is somewhat complicated in its dependence on the detailed structure of G. A relatively short argument and statement can be found in math.berkeley.edu/(tilde)jawolf/publications.pdf/paper_103.pdf
- If G is compact then $\widetilde{G}_{\text {temp }}=\widetilde{G}_{H}=\widetilde{G}$, so the Plancherel Theorem is just the Peter-Weyl Theorem.

Partially Harmonic Spinors

- Recall $H=T \times A$: θ-stable Cartan subgroup of G, $P=$ MAN associated cuspidal parabolic subgroup of G, and $p: X=G / U A N \rightarrow G / M A N=K / U$ fibration with riemannian symmetric fiber M / U where $U=M \cap K$.
- On each fiber, apply the realization of discrete series representations by harmonic spinors
- This can be done so that the spaces of bundle valued spinors vary measurably between fibers
- These fit together as spaces of square integrable partially harmonic spinors, $\int_{K / U} H_{2}^{j(\lambda)}\left(M A / U A ; \mathbb{V}_{\lambda+\rho_{\mathrm{m} / \mathrm{L}}}\right) d(k U)$
- Comparing with the construction of induced representations, the H-series representations are realized on those spaces of square integrable partially harmonic spinors

Possible Extension to Nilmanifolds

- N : connected simply connected nilpotent Lie group, center Z
- Suppose that N has representations that are square integrable $\bmod Z$
- Then the square integrable reps π_{λ} are specified by central character $e^{i \lambda}, \lambda \in \mathfrak{z}^{*}$, and the Plancherel density is a certain polynomial in λ
- In this square integrable case, express π_{λ} as rep of G on square integrable harmonic spinors
- Starting point: the case of the (generalized) Heisenberg group $\operatorname{Im} \mathbb{F}+\mathbb{F}^{m}$ where $\mathbb{F}=\mathbb{C}, \mathbb{H}$ or \mathbb{D}

