Dirac operators and representations of Lie groups

"Dirac Operators in Differential Geometry and Global Analysis"

Conference in memory of Thomas Friedrich

Bedlewo, 6-12 October 2019

Joseph A. Wolf

University of California at Berkeley

Topics in Talk

- Bundle-valued Dirac operators
- Representations of compact groups: Highest weights
- Realization on kernels of Dirac operators
- Representations of semisimple Lie groups: characters
- Representations of semisimple Lie groups: discrete series
- Realization on kernels of Dirac operators
- Measurable families of Dirac operators
- Representations of semisimple Lie groups: tempered series
- Realization on kernels of partial Dirac operators

Spinors

- $E = \mathbb{R}^n$ with pos. def. inner product $\langle u, v \rangle$, o.n. basis $\{e_i\}$
- **●** Clifford algebra $C\ell(E)$: gen. e_i , rel. $e_i \cdot e_j + e_j \cdot e_i = \delta_{i,j}$
- $C\ell^{\pm}(E) = \text{Span}\{e_{i_1} \dots e_{i_k}\}, i_1 < \dots < i_k, (-1)^k = \pm 1$
- \blacksquare $x \mapsto \bar{x}$ defined by $e_{i_1} \dots e_{i_k} \mapsto (-1)^k e_{i_k} \dots e_{i_1}$
- $Spin(E) = Spin(n) = \{x \in C\ell^{+}(E) \mid x \cdot \bar{x} = 1, x \cdot E \cdot \bar{x} = E\}$
- vector rep is $v: Spin(n) \to SO(n)$ by $v(x)e = x \cdot e \cdot \bar{x}$
- left multiplication $\ell(\cdot)$ of Spin(n) on $C\ell(E)_C$
- if n=2m+1 then $\ell=2^{m+1}s$, s spin rep, space $S, \dim 2^m$
- if n=2m then $\ell=2^m s, s=s^+\oplus s^-$ spin and half–spin reps, rep spaces $S=S^+\oplus S^-, \dim S^\pm=2^{m-1}$
- if n=2m Clifford mult defines maps $m^{\pm}:E_C\otimes S^{\pm}\to S^{\mp}$

Riemannian Spin Bundles

- Y: oriented n-dimensional riemannian manifold
- $\mathbb{F} \to Y$: oriented orthonormal frame bundle
- **●** Assume: Y is spin, i.e. the principal SO(n)—bundle \mathbb{F} lifts to a principal Spin(n)—bundle $\widetilde{\mathbb{F}} \to Y$.
- ▶ Let U be a closed subgroup of Spin(n) and $\mathbb{F}_U \to Y$ the principal U—sub-bundle of $\widetilde{\mathbb{F}} \to Y$ with structure group U.
- μ : finite dim unitary rep of U, representation space V_{μ} , hermitian vector bundle $\mathbb{V}_{\mu} \to Y$ associated to \mathbb{F}_U by μ
- ullet cases $\mathbb{S}=\mathbb{V}_s$ and $\mathbb{S}^\pm=\mathbb{V}_{s^\pm}$: spin and half-spin bundles
- cases $\mathbb{S} \otimes \mathbb{V}_{\mu} \to Y$ and (for n even) $\mathbb{S}^{\pm} \otimes \mathbb{V}_{\mu} \to Y$: bundles of \mathbb{V}_{μ} -valued spinors
- inner products on sections: $\langle \phi, \psi \rangle = \int_Y \langle \phi, \psi \rangle_y dy$

Bundle-valued Dirac Operators

- $L_2(Y; \mathbb{S} \otimes \mathbb{V}_{\mu})$: square integrable \mathbb{V}_{μ} -valued spinors
- Now assume n=2m even: then $L_2(Y;\mathbb{S}\otimes \mathbb{V}_{\mu})=L_2(Y;\mathbb{S}^+\otimes \mathbb{V}_{\mu})\oplus L_2(Y;\mathbb{S}^-\otimes \mathbb{V}_{\mu})$
- $\mathbb{T} \to Y$: complexified tang bundle, $\mathbb{T}^* \to Y$ cotang bundle
- covariant differentials:

$$\nabla^{\pm}: C^{\infty}(Y; \mathbb{S}^{\pm} \otimes \mathbb{V}_{\mu}) \to C^{\infty}(Y; \mathbb{T}^{*} \otimes \mathbb{S}^{\pm} \otimes \mathbb{V}_{\mu}) \text{ and }$$

$$\nabla = \nabla^{+} + \nabla^{-}: C^{\infty}(Y; \mathbb{S} \otimes \mathbb{V}_{\mu}) \to C^{\infty}(Y; \mathbb{T}^{*} \otimes \mathbb{S} \otimes \mathbb{V}_{\mu})$$

- Clifford mult: $m^{\pm}: \mathbb{T} \otimes \mathbb{S}^{\pm} \to \mathbb{S}^{\mp}$ and $m: \mathbb{T} \otimes \mathbb{S} \to \mathbb{S}$
- Dirac operators: $D=D^+\oplus D^-$ where $D^\pm=(m^\pm\otimes 1)\circ \nabla^\pm:C^\infty(Y;\mathbb{S}^\pm\otimes \mathbb{V}_\mu)\to C^\infty(Y;\mathbb{S}^\mp\otimes \mathbb{V}_\mu)$
- ullet In a moving orthonormal frame on an open subset of Y:

$$D\phi = \sum_{1 \le j \le n} e_j \cdot \nabla_{e_j}(\phi)$$

Square Integrable Harmonic Spinors

- D is an elliptic operator on $L_2(Y; \mathbb{S} \otimes \mathbb{V}_{\mu})$
- D has dense domain $C_c^{\infty}(Y; \mathbb{S} \otimes \mathbb{V}_{\mu})$
- On that domain, D is symmetric
- If Y is complete then D and D^2 are essentially self adjoint
- i.e. closures $\widetilde{D}=D^*$ and $\widetilde{D^2}=(D^2)^*$, so
 - those are the unique self—adjoint extensions
 - and they have well defined spectral decompositions
- their kernel is $H_2(Y; \mathbb{V}_{\mu}) = \{ \phi \in L_2(Y; \mathbb{S} \otimes \mathbb{V}_{\mu}) \mid D\phi = 0 \}$: square integrable \mathbb{V}_{μ} -valued spinors
- $H_2(Y; \mathbb{V}_{\mu})$ closed in $L_2(Y; \mathbb{S} \otimes \mathbb{V}_{\mu})$, $\subset C^{\infty}(Y; \mathbb{S} \otimes \mathbb{V}_{\mu})$, is orthogonal sum $H_2(Y; \mathbb{V}_{\mu}) = H_2^+(Y; \mathbb{V}_{\mu}) \oplus H_2^-(Y; \mathbb{V}_{\mu})$ where $H_2^{\pm}(Y; \mathbb{V}_{\mu}) = \{\phi \in L_2(Y; \mathbb{S} \otimes \mathbb{V}_{\mu}) \mid D^{\pm}\phi = 0\}$

Homogeneous Spin Bundles

- μ : unitary representation of K on vector space V_{μ}
- $\mathbb{V}_{\mu} \to Y$: corresp *G*-homog. hermitian vector bundle
- The natural action of G on $L_2(Y; \mathbb{V}_{\mu})$ is continuous and defines a unitary representation of G
- The Dirac operator D (and D^{\pm} if n is even) is invariant
- The natural action of G on $H_2(Y; \mathbb{V}_{\mu})$ (resp. $H_2^{\pm}(Y; \mathbb{V}_{\mu})$) is a unitary representation π_{μ} (resp. π_{μ}^{\pm}) of G
- Now we will assume n=2m even, and will look at the structure of \widehat{G} and $L_2(G)$ in terms of the π_μ^\pm . The first step uses square integrable representations.

Square Integrable Representations

- ullet G is a separable locally compact group, center Z
- $m{m{\square}}$ $\pi \in \widehat{G}$ irreducible unitary representation
- if $u, v \in \mathcal{H}_{\pi}$ then the coefficient $f_{u,v}(g) = \langle u, \pi(g)v \rangle$
- These are equivalent:
 - There exist nonzero $u, v \in \mathcal{H}_{\pi}$ with $|f_{u,v}| \in L^2(G/Z)$.
 - $|f_{u,v}| \in L^2(G/Z)$ for all $u, v \in \mathcal{H}_{\pi}$.
 - π is a discrete summand of $\operatorname{Ind}_Z^G(\chi_\pi)$.
- π is square integrable (mod Z) if $|f_{u,v}| \in L_2(G/Z)$ for some $u \neq 0 \neq v$.
- Then the formal degree $\deg \pi > 0$, is defined by $\int_{G/Z} f_{u,v}(x) \overline{f_{u',v'}(x)} d\mu_{G/Z}(xZ) = \frac{1}{\deg \pi} \langle u, u' \rangle \overline{\langle v, v' \rangle}$

Examples

- If G is compact then every $\pi \in \widehat{G}$ is square integrable
- If G is the universal covering group of U(n) then
 - its center $Z\cong\mathbb{Z}$ and G/Z is compact
 - ${\color{red} \bullet}$ every $\pi \in \widehat{G}$ is square integrable mod Z
- If G=SU(1,1) acting on $B=\{z\in\mathbb{C}\mid |z|<1\}$ by linear fractional transformations, and $\mathbb{L}\to B$ is a negative G-homogeneous holomorphic line bundle,
- then the natural action of G on $H_2^0(B;\mathcal{O}(\mathbb{L}))$ is an infinite dimensional square integrable representation
- If G is the Heisenberg group of dimension 2n + 1 then the Fock representations (on Hermite polynomials on \mathbb{C}^n) are square integrable (mod the center).

Semisimple Group Characters

- G connected real semisimple (or reductive) Lie group
- $\pi \in \widehat{G}$: has three sorts of characters
 - central character ζ_{π} : $\pi(gz) = \zeta_{\pi}(z)\pi(g)$ for $z \in Z_G$
 - infinitesimal character: $d\pi(\Xi) = \chi_{\pi}(\Xi)$ for $\Xi \in \mathcal{Z}(\mathfrak{g})$ center of the enveloping algebra of $\mathcal{U}(\mathfrak{g})$
 - distribution character (which specifies π): $\Theta_{\pi}(f) = trace \int_{C} f(x)\pi(x)dx$ for $f \in C_{c}^{\infty}(G)$
- If $\Xi \in \mathcal{Z}(\mathfrak{g})$ then $\Xi(\Theta_{\pi}) = \chi_{\pi}(\Xi)\Theta_{\pi}$
- **●** Elliptic regularity Θ_{π} is C^{∞} on the regular set in $G' \subset G$
- ullet $\operatorname{codim}(G \setminus G') \geqq 2$ and Θ_{π} has only finite jumps on $G \setminus G'$
- $\Theta_{\pi}(f) = \int_{G} f(x) T_{\pi}(x) dx$ where $T_{\pi} \in C^{\infty}(G')$ satisfies $\Xi(T_{\pi}) = \chi_{\pi}(\Xi) T_{\pi}$ for all $\Xi \in \mathcal{Z}(\mathfrak{g})$

Discrete Series I

- ullet G: semisimple Lie group w/ compact Cartan subgroup T
- $K \subset G$ max compact subgroup, $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$, with $K \supset T$
- ullet $\Delta_{\mathfrak{t},\mathfrak{g}}$ roots; $\Delta_{\mathfrak{t},\mathfrak{k}}$ compact roots, $\Delta_{\mathfrak{t},\mathfrak{p}}$ noncompact roots,
- ullet $\Delta_{\mathfrak{t},\mathfrak{g}}^+$, $\Delta_{\mathfrak{t},\mathfrak{k}}^+$, $\Delta_{\mathfrak{t},\mathfrak{p}}^+$ positive roots, $ho_{ullet} = rac{1}{2} \sum_{\Delta_{\mathfrak{t},ullet}^+}
 u$, $ho_{\mathfrak{g}} =
 ho_{\mathfrak{k}} +
 ho_{\mathfrak{p}}$
- ullet $W=W_{\mathfrak{t},\mathfrak{g}}$ Weyl group, $W^1=\{w\in W\mid \Delta_{\mathfrak{t},\mathfrak{k}}^+\subset w(\Delta_{\mathfrak{t},\mathfrak{g}}^+)\}$
- $\mathcal{F}_0' = \text{ all } \lambda \in i\mathfrak{t}^* \text{ such that }$
 - $e^{\lambda} \in \widehat{T}$ with $\langle \lambda + \rho_{\mathfrak{p}}, \alpha \rangle \neq 0$ for $\alpha \in \Delta_{\mathfrak{t},\mathfrak{p}}$ and $q(\lambda) = \#\mathsf{pos}$
 - $\lambda + \rho_{\mathfrak{p}}$ is K-dominant, i.e. $\langle \lambda + \rho_{\mathfrak{p}}, \alpha \rangle > 0$ for $\alpha \in \Delta_{\mathfrak{t},\mathfrak{k}}^+$
- $\lambda \in \mathcal{F}_0'$: $\pi_{\lambda + \rho_g}$ is the unique square integrable rep. of G with distribution character given on $T \cap G'$ by

$$T_{\pi_{\lambda+\rho_{\mathfrak{g}}}}(x) = (-1)^{q(\lambda+\rho_{\mathfrak{g}})} \frac{\sum_{W} \det(w) e^{\lambda+\rho_{\mathfrak{g}}}(x)}{\prod_{\Delta_{\mathfrak{t},\mathfrak{g}}^{+}} (e^{\alpha} - e^{-\alpha})(x)}$$

Discrete Series II

- The discrete series \widehat{G}_{disc} consists all equivalence classes of square integrable representations of G
- $\lambda \mapsto \pi_{\lambda + \rho_{\mathfrak{g}}}$ defines a bijection $\mathcal{F}'_0 \leftrightarrow \widehat{G}_{disc}$
- **●** Given $\lambda \in \mathcal{F}'_0$: $\mu_{\lambda+\rho_{\mathfrak{p}}}$ rep of K, highest wt $\lambda+\rho_{\mathfrak{p}}$, on $V_{\lambda+\rho_{\mathfrak{p}}}$
 - recall $H_2(G/K; \mathbb{V}_{\lambda+\rho_{\mathfrak{p}}})$: square integrable harmonic spinors with values in $\mathbb{V}_{\lambda+\rho_{\mathfrak{p}}}$ and $\pi_{\mu_{\lambda+\rho_{\mathfrak{p}}}}$ rep of G there
 - $H_2^{\pm}(G/K; \mathbb{V}_{\lambda+\rho_{\mathfrak{p}}})$ and $\pi_{\mu_{\lambda+\rho_{\mathfrak{p}}}}^{\pm}$: half spin summands
- Let $j(\lambda)$ be the sign \pm of $(-1)^{q(\lambda+\rho_{\mathfrak{g}})}$
- If $\lambda \in \mathcal{F}_0'$ then (1) $H_2^j(G/K; \mathbb{V}_{\lambda+\rho_\mathfrak{p}}) = 0$ for $j \neq j(\lambda)$ and (2) the representation $\pi_{\mu_{\lambda+\rho_\mathfrak{p}}}^{j(\lambda)}$ of G on $H_2^{j(\lambda)}(G/K; \mathbb{V}_{\lambda+\rho_\mathfrak{p}})$ is the discrete series representation $\pi_{\mu_{\lambda+\rho_\mathfrak{q}}}^{j(\lambda)}$

Harish-Chandra Theory I

- Cayley transform between conj classes of Cartan subalg of g defines cascade from max. compact Cartan subalg. to max. noncompact Cartan subalg., defines ordering ≻
- $H=T\times A=\theta H$: cuspidal parabolic P=MAN and fibr $p:X=G/UAN\to G/MAN=K/U$ θ Cartan involution of $G,\,K=G^{\theta}$ and T CSA in $U=M\cap K$
- ▶ H-series: $\{\pi_{\gamma,\sigma} = \operatorname{Ind}_P^G(\gamma \otimes e^{i\sigma}) \mid \gamma \in \widehat{M}_{disc} \text{ and } \sigma \in \mathfrak{a}^*\}$
- G'_H : subset of reg set G' of elements conj Cartan $J \succ H$
- Given $\pi_{\gamma,\sigma}$ in the H-series \widehat{G}_H :
 - ullet infinitesimal character $\chi_{\pi_{\gamma,\sigma}}=\chi_{\gamma+
 ho_{\mathfrak{m}}}|_{Z_G}$
 - distribution character $\Theta_{\pi_{\gamma,\sigma}}$, concentrated in $\bigcup_{J\succ H}G'_J$, determined by restriction to G'_H , given there by an explicit integral formula

Harish-Chandra Theory II

- Car(G): set of all conj classes of Cartan subgroups of G
- $\widehat{G}_{temp} := \bigcup_{H \in Car(G)} \widehat{G}_H$: all the tempered reps of G
- Plancherel measure on \widehat{G} is concentrated on \widehat{G}_{temp}
- There is an explicit Plancherel formula for Schwartz class functions.
- However it is somewhat complicated in its dependence on the detailed structure of G. A relatively short argument and statement can be found in math.berkeley.edu/(tilde)jawolf/publications.pdf/paper_103.pdf
- If G is compact then $\widetilde{G}_{temp} = \widetilde{G}_H = \widetilde{G}$, so the Plancherel Theorem is just the Peter-Weyl Theorem.

Partially Harmonic Spinors

- Recall $H = T \times A$: θ-stable Cartan subgroup of G, P = MAN associated cuspidal parabolic subgroup of G, and $p: X = G/UAN \to G/MAN = K/U$ fibration with riemannian symmetric fiber M/U where $U = M \cap K$.
- On each fiber, apply the realization of discrete series representations by harmonic spinors
- This can be done so that the spaces of bundle valued spinors vary measurably between fibers
- These fit together as spaces of square integrable partially harmonic spinors, $\int_{K/U} H_2^{j(\lambda)}(MA/UA; \mathbb{V}_{\lambda+\rho_{\mathfrak{m}/\mathfrak{u}}})d(kU)$
- Comparing with the construction of induced representations, the H-series representations are realized on those spaces of square integrable partially harmonic spinors

Possible Extension to Nilmanifolds

- N: connected simply connected nilpotent Lie group, center Z
- ullet Suppose that N has representations that are square integrable mod Z
- Then the square integrable reps π_{λ} are specified by central character $e^{i\lambda}, \lambda \in \mathfrak{z}^*$, and the Plancherel density is a certain polynomial in λ
- In this square integrable case, express π_{λ} as rep of G on square integrable harmonic spinors
- Starting point: the case of the (generalized) Heisenberg group $\operatorname{Im} \mathbb{F} + \mathbb{F}^m$ where $\mathbb{F} = \mathbb{C}, \mathbb{H}$ or \mathbb{O}

Thank You for Your Attention