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Almost Quaternionic Structures

An Almost quaternionic structure on a manifold M is a smooth algebra
sub-bundle Q ⊂ End(TM) modelled on the associative algebra of
quaternions

H = 〈1, I , J,K 〉

which is described by

I 2 = J2 = K 2 = IJK = −1

Definition

An algebra bundle trivialization of an almost quaternionic structure is
called an almost hypercomplex structure. Not every almost quaternionic
manifold is trivializable.

An almost quaternionic manifold is of real dimension 4n, where n is
called the quaternionic dimension.
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Almost Quaternionic and Subordinated Structures

There has been a lot of development of the theory of quaternionic and
almost quaternionic structures and their reductions. The subject can be
treated in several ways, for a classical treatment see the 1996 paper by
Alekseevsky and Marchiafava. In that work, they considered not only
almost quaternionic structures but also reductions:

Unimodular quaternionic structures (Q, vol)

Almost hypercomplex structures (I , J,K )

quaternion pseudo-Hermitian structures (Q, g)

and more . . .

A lot of inspiration for our current project came from this work, as well
as works by Swann and Cabrera on almost quaternion-Hermitian
structures. A lot of other names should be mentioned.

Motivation

In this talk, we will describe an additional Irreducible reduction which was
not previously considered.
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Consider a quaternionic right vector space V of quaternionic dimension
n. With respect to the structure group Sp(1)GL(n,H), there is a
decomposition of the space of (real-valued) two-forms:

Λ2(V ) = Λ2
scal(V )⊕ Λ2

ImH(V )

We have Λ2
scal(V ) = Λ2(V )Sp(1), called forms of scalar type

Λ2
ImH(V ) are called forms of imaginary type. Transforms like

quaternion-valued forms.

The (local) Kähler forms from quaternion-Hermitian and
quaternion-Kähler structures take values in the sections of the forms of
imaginary type. In this talk we will discuss the geometries which arise
from the scalar type two-forms.
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Let V be a quaternionic right vector space.

Definition

A linear quaternion-symplectic structure is a non-degenerate scalar type
two-form ω ∈ Λ2

scalV
∗.

Definition

A linear quaternion-symplectic structure is a non-degenerate two-form
ω ∈ Λ2V ∗ such that the contractions between I , J,K and ω in one index
are symmetric (denoted gI , gJ , gK ).

Definition

A linear quaternion-symplectic structure is a quaternion-valued inner
product h : V × V → H which is skew-symmetric in the real part and
symmetric in the imaginary part. (Set ω = Re(h).)

Proposition

These definitions are equivalent.

Henrik Winther Joint with I.Chrysikos Quaternion-Symplectic Structures



6/20

History and Motivation
Linear structures

Curved structures

Definitions
Subgroups: even and odd models

From now on, we will use the first definition ω ∈ Λ2
scalV

∗. The structure
group of a linear quaternionic-symplectic structure on Hn is
Sp(1)SO∗(2n) ⊂ Aut(Q) = Sp(1)GL(n,H). Subgroup diagram:

Sp(1)GL(n,H)

Sp(1)SL(n,H)

OO

Sp(1)Sp(p, q)

66

Sp(1)SO∗(2n)

hh
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The group G = SO∗(2n) is different for even and odd quaternionic
dimension. This is reflected in the Satake diagrams of their Lie algebras.

n = 2k : sΛ1 cΛ2 sΛ3
. . . s ��

HH
c

Λn−2

Λn−3 sΛn−1

Λn

c

n = 2k + 1 : sΛ1 cΛ2 sΛ3
. . . c ��

HH
s

Λn−2

Λn−3 cΛn−1

Λn

c
6?

Therefore we will give separate descriptions of the structures by means
of finding special subgroups in SO∗(2n) that allow us to write the
quaternion-symplectic forms as a product of more well known tensors.
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For even n = 2k , consider the irreducible subgroup Sp(1)Sp(2k,R). Note
that this Sp(1) is not the same as the ideal in Sp(1)SO∗(2n)! With
respect to this reduction, we can write Hn ' H⊗ R2k , with the structure

ω = gH ⊗ ω0

This realizes the linear quaternion-symplectic structure as a
quaternionification of a linear symplectic structure. A tensor product
basis here yields a quaternionic “Darboux basis”.

Hn = 〈v e
1 , v

i
1, v

j
1, v

k
1 , v

e
2 , · · · , v e

n , v
i
n, v

j
n, v

k
n 〉

such that

ω = θe1 ∧ θe2 + θi1 ∧ θi2 + θj1 ∧ θ
j
2 + θk1 ∧ θk2 + θe3 ∧ θe4 + · · ·+ θkn−1 ∧ θkn

i.e. Hn decomposes into a sum of (quaternionic) one-dimensional
quaternionic subspaces which are isotropic.
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For odd n = 2k + 1, we consider the subgroup SO(2k + 1,C). Then we
can write Hn ' C2k+1 ⊗R C = (Cn)C.

Re(g)⊗ ω0

This is the quaternionification of the complex-bilinear form g on a
complex vector space.

Remark

Although the odd and even subgroups are quite different, they were
found by the same method. The technique is to look for “diagonal”
subgroups, i.e. subgroups for which the standard module Hn branches
into a sum of several equivalent modules. In the even case this yields a
diagonal Sp(1) ⊂ SO∗(2n). In the odd case however, a diagonal Sp(1)
does not exist.
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Definition

An almost quaternion-symplectic structure on an almost quaternionic
manifold (M,Q) is a non-degenerate two form ω ∈ Ω2

scal(M) of scalar
type.

Definition

An almost hypercomplex-symplectic structure on an almost hypercomplex
manifold (M, I , J,K ) is a non-degenerate two form ω ∈ Ω2

scal(M) of
scalar type.

These manifolds are G -structures for G = Sp(1)SO∗(2n) and
G = SO∗(2n), respectively.

Remark

There is a fundamental tensor Φ ∈ S4T ∗M.

Φ = gI � gI + gJ � gJ + gK � gK
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Quaternionified symplectic structures

Let (M, ω0) be an almost symplectic manifold. Define

MH = M ×Mi ×Mj ×Mk

where each factor is a diffeomorphic copy of M. For arbitrary local
coordinates {x l} on M, define coordinates {x l , Ix l , Jx lKx l} on MH.
Then, for A ∈ {I , J,K}, set

A(∂qx l ) = ∂(Aq)x l

modulo ∂−qx l = −∂qx l . Now we have

TqMH ' TxM ⊗ 〈1, I , J,K 〉 ' TxM ⊗H

which allows us to use the formula

ω = ω0 ⊗ gH

to realize (MH, I , J,K , ω) as an even dimensional almost
hypercomplex-symplectic structure.
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Cotangent bundles

Let (N4n,Q,∇) be an affine quaternionic manifold, ie. equipped with a
torsion-free quaternionic connection. Set M = T ∗N. Then, we have the
splitting into horizontal and vertical subspace

T (T ∗N) = H⊕ V ' TN ⊕ T ∗N

and the map

ρ : End(TN)→ End(TN)⊕ End(T ∗N)
∇→ End(TM)

Thus we can induce a quaternionic structure ρ(Q) on M. Then, the
canonical symplectic form ω = −dθ is of scalar-type, and in fact this
happens if and only if ∇ is torsion-free. Thus we have constructed a
quaternion-symplectic structure on M = T ∗N.

Remark

Removing the dependence on ∇. . .
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The almost hypercomplex-symplectic structure group can be regarded as
a subgroup of SO(2n, 2n). Therefore, we can in principle treat it as a
pseudo-Riemannian reduction. However, the three metrics gI , gJ , gK are
on equal footing, and this method requires a choice.
The almost quaternion symplectic structure group, on the other hand,
admits no invariant pseudo-Riemannian metric.
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Intrinsic torsion of general G -structures

We want to consider the integrability properties of almost
quaternion-symplectic structures. To do this in general we need to use
adapted connections. For general G -structures, such connections are not
necessarily unique or canonical. In this situation we may use the Spencer
cohomology,

g(1) → g⊗ V ∗
δ→ V ⊗ Λ2V ∗

This measures how the torsion of an adapted connection can be
calibrated by adding gauge terms with values in the structure algebra.
Thus we have a notion of minimal intrinsic torsion.

Theorem

For the Lie algebra g = sp(1)⊕ so∗(2n), we have the Spencer
δ-cohomology

H0,2(g) = H(E + K + S3
0 E ) + S3H(Λ3E + K ).

This is the module where intrinsic torsion lives. The prolongation
g(1) = T ∗ ⊗ g ∩ S2T ∗ ⊗ T give torsion-preserving gauges.
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Berger criterion

There is a necessary condition for a Lie algebra g to appear as a holonomy
algebra of a torsion-free connection. This is called the Berger criterion.
This criterion is not satisfied by so∗(2n), Hence torsion-free
hypercomplex-symplectic structures are necessarily locally equivalent,
meaning we have in a sense quaternionic Darboux coordinates. However,
sp(1)⊕ so∗(2n) does satisfy the Berger criterion, and can appear as a
holonomy subalgebra of a torsion-free connection. This means that fully
1-integrable quaternion-symplectic structures admit local geometry.
(This is not due to us, see Berger, Bryant and Schwachhöfer.)
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The torsion-free case

Torsion-free quaternion symplectic structures include, in particular,

a symplectic structure ω,

a torsion-free connection ∇∗ with ∇∗ω = 0,

with reduced holonomy
Hol(∇∗) = G = Sp(1)SO∗(2n) ⊂ Sp(4n, 2R).

This situation can therefore be considered from the symplectic point of
view, and falls under the umbrella of special symplectic holonomy. This
was explored by Schwachhöfer and Cahen in 2009, which yielded a local
classification. We specialize their results to our structure.

Theorem (Schwachhöfer, Cahen)

A torsion-free quaternion-symplectic structure (Q, ω) is locally equivalent
to a symplectic reduction of the parabolic contact geometry
SO∗(2n + 2)/P2 by a symmetry vector field. Hence the moduli space of
such structures is finite dimensional.
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Proposition

We have the first prolongations g(1) = {0} for g = so∗(2n) and
g = sp(1)⊕ so∗(2n)

Corollary

Let (M,Q, ω) be an almost quaternion-symplectic structure. Then there
exists a unique minimal connection ∇∗ with torsion such that

The torsion component in S3H(Λ3E + K ) coincides with the
intrinsic torsion of the almost-quaternionic structure Q.

The torsion component in H(E + K ) is the projections of the
intrinsic torsion of the almost-symplectic structure ω, branched.

The torsion component in H S3
0 E is the “compatibility” torsion of

(Q, ω).

There is a corresponding statement for almost hypercomplex-symplectic
structures, but with many more torsion components.
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Remark

Almost quaternionic structures or almost-symplectic structures admit no
canonical choice of connection.

First, notice that we can take the tensor power

vol = ω2n,

which is gives us a reduction to a unimodular quaternionic structure
(Q, vol). Following Alekseevsky, Marchiafava we may start with an
arbitrary Oproiu connection ∇ then obtain a unique quaternionic
connection preserving vol:

∇(Q,vol) = ∇+
1

4(n + 1)
Sθ

Where θ is defined by ∇vol = θ ⊗ vol and Sθ is an equivariant map from
T ∗M to TM ⊗ S2T ∗M. Then we may take the adaptation

∇∗ = ∇(Q,vol) + A

where A depends on ∇(Q,vol)ω: ω(A(X ,Y ),Z ) = 1
2 (∇(Q,vol)

X ω)(Y ,Z ).
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Non-tensorial representations of Lie algebras

Let g be a real simple Lie algebra, and let V be a real g-module of lowest
possible dimension. Call a g-module tensorial if it appears as a
submodule in a tensor power

⊗k V for some k .

Proposition

All finite-dimensional simple g-modules are tensorial unless g is one of

so(n)

so(p, q)

so∗(2n)

The existence of a non-tensorial g-module implies the existence of a
non-trivial finite covering G ′ → G = exp(g)2 ⊂ End(V ).
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The group SO∗(2n) has maximal compact subgroup U(n), hence
π1(SO∗(2n)) = Z.

Definition

Let Spin∗(2n) = exp(g)2 ⊂ End(W ) be the Lie group acting faithfully on
W =

⊕
α Vα, where W is the direct sum of all the fundamental

representations of so∗(2n).

The cover Spin∗(2n)→ SO∗(2n) can be given by restricting the
representation to V = Vπ1 , the first fundamental representation.

Definition

Let (M,Q, ω) be a quaternion-symplectic manifold. We may attempt to
define an analogue of the Riemannian spin-structures and spinor-bundles
by considering principal Sp(1)Spin∗(2n)-bundles compatible with the
structure group, and bundles associated to non-tensorial
sp(1)⊕ so∗(2n)-modules.

Due to the canonical connection ∇∗, we may then attempt to mimic the
construction of Dirac operators.
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