Harmonic Spinors on Gravitational Instantons

Guido Franchetti

Dipartimento di Matematica Giuseppe Peano, Università di Torino

Dirac operators in Differential Geometry and Global Analysis In memory of Thomas Friedrich Castle Bedlewo, October 10th 2019

The title

► Gravitational instantons: Complete Einstein (or more) Riemannian 4-manifolds. We will consider:

Taub-Bolt	ТВ	Ricci-flat	Non-compact
Euclidean Schwarzschild	ES	Ricci-flat	Non-compact
Taub-NUT	TN	Hyperkähler	Non-compact

► Harmonic spinors: Solutions of the (massless) Dirac equation

$$\begin{split} \not\!\!D\psi &= 0, \quad \not\!\!D = \gamma^\mu \nabla_\mu, \\ \not\!\!D_{\mathcal{A}}\psi &= 0, \quad \not\!\!D_{\mathcal{A}} = \gamma^\mu (\nabla_\mu + \mathcal{A}_\mu). \end{split}$$

 \blacktriangleright We will construct all the L^2 harmonic spinors on TN, TB, ES.

ALF gravitational instantons

Taub-NUT (TN), Taub-Bolt (TB), Euclidean Schwarzschild (ES).

- Complete, Ricci-flat, non-compact, infinite volume.
- ▶ Topology: TN: \mathbb{C}^2 ; ES: $\mathbb{R}^2 \times S^2$; TB: $\mathbb{C}P^2 \setminus \{p\}$.
- ▶ Rotationally symmetric (SU(2) or SO(3) isometry group).
- Additional isometric circle action.
- ► Asymptotically circle bundles over Euclidean ℝ³ with fibres of finite length (ALF).
 - TN, TB twisted (Hopf fibration); ES trivial ($S^2 \times S^1$).
- Fixed point set of the U(1) action (nuts and bolts) topology: TN: NUT (single point); TB, ES: bolt (2-sphere).

ALF gravitational instantons (2)

► Metric of bi-axial Bianchi IX type (TN, TB):

$$\begin{split} g &= f^2(r) \mathrm{d} r^2 + a^2(r) (\eta_1^2 + \eta_2^2) + c^2(r) \eta_3^2, \quad \text{TN, TB,} \\ g &= f^2(r) \mathrm{d} r^2 + a^2(r) (\eta_1^2 + \eta_2^2) + c^2(r) \mathrm{d} \psi^2, \text{ ES,} \end{split}$$

 η_i left-invariant 1-forms on SU(2), $\eta_1^2 + \eta_2^2 = g_{S^2}$, $\psi \in [0, 2\pi)$.

TB has the asymptotic topology of TN (twisted circle fibration) and the fixed point set structure of ES (bolt).

A problem and its solution

- ► TB is not spin.
- ► TN and ES are spin but by Lichnerowicz's identity

$$\langle \not D\psi, \not D\psi\rangle = \langle \nabla\psi, \nabla\psi\rangle + \frac{s}{4}\|\psi\|^2$$

they admit no non-trivial L^2 harmonic spinors.

- Solution: twist the Dirac operator by an Abelian connection \mathcal{A} (introduce a Spin^{\mathbb{C}} structure).
- It is natural to require the curvature $\mathcal{F} = d\mathcal{A}$ to be an L^2 harmonic 2-form.

Harmonic cohomology

By results of Hausel, Hunsicker and Mazzeo

$$L^{2}\mathcal{H}^{2}(M) = H^{2}(X_{M}), \qquad L^{2}\mathcal{H}^{p}(M) = 0 \text{ if } p \neq 2,$$

where $M \in \{\text{TN, TB, ES}\}$ and $X_M = M \cup \Sigma_{\infty}$ is the compact manifold obtained by collapsing the fibres of the asymptotic fibration which has base Σ_{∞} . In all three cases $\Sigma_{\infty} = S^2$.

Smooth simply connected 4-manifolds are classified up to homeomorphism by their intersection form. Therefore:

М	X _M	$\dim(H^2(X_M))$
TN	$\mathbb{C}P^2$	1
ES	$\mathbb{C}P^1 imes \mathbb{C}P^1$	2
ТВ	$\mathbb{C}P^2\#\overline{\mathbb{C}P^2}$	2

Harmonic cohomology (2)

- ▶ In all 3 cases $L^2\mathcal{H}^2$ is generated by $\{\mathrm{d}\xi^\flat, *\mathrm{d}\xi^\flat\}$, ξ the Killing vector field generating the U(1) isometry. For TN $\mathrm{d}\xi^\flat = *\mathrm{d}\xi^\flat$.
- ▶ However it is more convenient to take harmonic representatives of the Poincaré duals (in the compactification) of Σ_{∞} and, for ES and TB, of the bolt. For $p,q\in\mathbb{Z}$ we have

$$\begin{split} \mathcal{F}_{\mathsf{TN}} &= -\pi (2q+1) F_{\infty}, & \text{self-dual (SD)}, \\ \mathcal{F}_{\mathsf{ES}} &= -2\pi \left[q \, F_{\infty} + p \, F_{\mathrm{bolt}} \right], & \text{SD if } p = q, \\ \mathcal{F}_{\mathsf{TB}} &= -\pi \left[(2q+1) F_{\infty} - (2p+1) F_{\mathrm{bolt}} \right], & \text{SD if } q = 3p+1. \end{split}$$

L^2 Harmonic spinors — TB

We are looking for normalisable solutions of the equation

$$0 = \mathcal{D}_{\mathcal{A}} \psi = \begin{pmatrix} \mathbf{0} & \mathsf{T}_{\mathcal{A}}^{\dagger} \\ \mathsf{T}_{\mathcal{A}} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \Psi \\ \mathbf{\Phi} \end{pmatrix}, \qquad \mathrm{d} \mathcal{A} = \mathcal{F},$$

 $T_{\mathcal{A}} = \phi_1(r, \partial_r)\mathbf{1} + \phi_2(r)\mathbf{P}_{\mathcal{A}}$, with $\mathbf{P}_{\mathcal{A}}$ the twisted Dirac operator on the squashed 3-sphere (TN, TB). L^2 solutions have either $\Psi = 0$ or $\Phi = 0$. Let us focus on $\Phi = 0$.

- ▶ Reduce to an ODE by taking $\Psi = h(r)\mathbf{v}$, \mathbf{v} eigenvector of $\mathbf{P}_{\mathcal{A}}$.
- ▶ Eigenvectors of $\mathbf{P}_{\mathcal{A}}$ leading to L^2 solutions have the form $(|j,j,m_2\rangle,0)^T$ or $(0,|j,-j,m_2\rangle)^T$ with $|j,m_1,m_2\rangle := |j,m_1\rangle \otimes |j,m_2\rangle \in V_j \otimes V_j$ with V_j the $\mathfrak{sl}(2,\mathbb{C})$ irreducible representation of dimension 2j+1.

L^2 Harmonic spinors — TB (2)

Using coordinates in which the metric has the form

$$\begin{split} g_{\mathrm{TB}} &= V \mathrm{d} r^2 + (r^2 - N^2)(\eta_1^2 + \eta_2^2) + 4 N^2 V^{-1} \eta_3^2, \\ V &= \frac{r^2 - N^2}{(r - 2N)(r - N/2)}, \ N > 0, \ r \in [2N, \infty), \end{split}$$

the solution of the ODE corresponding to $m_1=\pm j$ is

$$h = \frac{C}{\sqrt{r+N}} e^{\left(2j+1\mp\left(q+\frac{1}{2}\right)\right)\frac{r}{4N}}.$$

$$(r-2N)^{-\left(j+\frac{3}{4}\mp\frac{1}{2}\left(p+\frac{1}{2}\right)\right)} (r-N/2)^{-\left(\frac{j}{4}+\frac{3}{8}\mp\frac{1}{8}\left(p+\frac{1}{2}\right)\right)}.$$

L^2 Harmonic spinors — TB focused (3)

▶ The $m_1 = \pm j$ TB solution is L^2 if

$$\pm \left(p+\frac{1}{2}\right)+\frac{1}{2} \leq 2j+1 \leq \pm \left(q+\frac{1}{2}\right)-\frac{1}{2}.$$

Recall that $\mathcal{F} = -\pi \left[(2q+1) \mathcal{F}_{\infty} - (2p+1) \mathcal{F}_{\mathrm{bolt}} \right]$.

▶ $|j, \pm j, m_2\rangle$ has multiplicity 2j + 1 as $m_2 \in \{-j, -j + 2, \dots, j\}$, so the number of L^2 harmonic spinors is, as $\operatorname{Ker}(\mathbf{T}_{\mathcal{A}}^{\dagger}) = 0$,

$$\operatorname{index}(\mathcal{D}_{\mathcal{A}}) = \operatorname{dim}\left(\operatorname{Ker}(\mathsf{T}_{\mathcal{A}})\right) = \left|\frac{q(q+1)}{2} - \frac{p(p+1)}{2}\right|,$$

in agreement with what found using the APS index theorem.

L^2 Harmonic spinors — TN and ES

For both L^2 harmonic spinors $(\Psi, \Phi)^T$ have either $\Phi = 0$ or $\Psi = 0$.

- ► TN is completely analogous. $\Psi = k(r)(|j,j,m_2\rangle,0)^T$ or $k(r)(0,|j,-j,m_2\rangle)^T$. The ODE for k is different; the allowed values of j for $m_2 = \pm j$ are $1 \le 2j + 1 \le \pm (q + 1/2) 1/2$.
- **ES** needs a slightly different treatment since the SO(3) orbits are 2-dimensional. L^2 harmonic spinors have the form

$$\Psi = h_{\pm}(r)e^{\pm i(n+1/2)\psi}\mathbf{v}_{\pm}, \quad n \in \mathbb{Z}, \ 0 \le n \le \pm q-1,$$

where \mathbf{v}_{\pm} is a zero mode of the Dirac operator on S^2 twisted by the line bundle with first Chern number p. \mathbf{v}_{\pm} belongs to the $\mathfrak{sl}(2,\mathbb{C})$ irrep of dimension |p|. Upper (lower) sign for $p \geq 1$ $(p \leq -1)$.

Harmonic spinors and topology

 $L^2\mathcal{H}^2$ is related to the structure of the U(1) action fixed point set \mathcal{S} . Its dimension is equal to the number of bolts.

 L^2 harmonic spinors belong to $\mathfrak{sl}(2,\mathbb{C})$ irreps. The allowed dimension 2j+1 of the irrep is related to the value of $\mathcal A$ over $\mathcal S$: Let $\omega=\frac12\eta_3$ be the connection on the U(1) bundle over S^2 with first Chern number 1. Then $(m_1=+j)$

М	$\mathcal{A} _{nut/bolt}$	$\mathcal{A} _{\Sigma_{\infty}}$	range of <i>j</i>	index
TB	$\left(p+\frac{1}{2}\right)\omega$	$\left(q+\frac{1}{2}\right)\omega$	$\frac{p}{2},\ldots,\frac{q-1}{2}$	$\frac{1}{2} q(q+1)-p(p+1) $
TN	0	$\left(q+\frac{1}{2}\right)\omega$	$0,\ldots,rac{q-1}{2}$	$rac{1}{2} q(q+1) $
ES	$p\omega$	$p\omega$	$j = \frac{p-1}{2}$	pq

In all cases the result agrees with the APS index theorem.

Thank you very much for your attention!