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Context: Geometry of almost 3-contact metric manifolds

Goals & Motivation

Define and investigate new classes of such manifolds:
e the Levi-Civita connection is not well-adapted to the structure

e look for ‘good’ metric connections with skew torsion

In particular,
e introduce notion of p-compatible connections,

e make them unique by a certain extra condition — canonical
connection,

e define the new class of canonical almost 3-contact metric manifolds
e define and study 3-(a, §)-Sasaki manifolds
e compute torsion, holonomy, curvature of the canonical connection,

e provide lots of examples, classify the homogeneous ones, further
applications (metric cone, existence of generalized Killing spinors. . .)



Almost contact metric structures

(M?"+1 o €,m,g) almost contact metric manifold if
- & is a vector field &, called the Reeb vector field,

-n= g(§7 ')'
- ¢is a (1,1)-tensor field such that ¢ = 0 and

= 1, glpX,9pY)=g(X,Y)on (€)" = kern.

Equivalently, the structural group is reducible to U(n) x {1}.



Almost contact metric structures

(M?"+1 o €,m,g) almost contact metric manifold if
- & is a vector field &, called the Reeb vector field,

-n= g(§7 ')'
- ¢is a (1,1)-tensor field such that ¢ = 0 and

p?= — 1 g(pX,pY) = g(X,Y) on ()" = kern.

Equivalently, the structural group is reducible to U(n) x {1}.
Then,
o the fundamental 2-form is defined by

P(X,Y) = g(X, pY),

e it is called normal if N, := [¢, ] +dn® =0,
e o-Sasakian, a € R*, if dnp = 2a®, N, =0 (= ¢ Killing)

@ Sasakian if 1-Sasakian.



A metric connection V on (M, g) has totally skew-symmetric torsion
(skew torsion for brief) if the (0, 3)-tensor field

T(X,Y,Z) =g(VxY - VyX — [X,Y],2)
is a 3-form (< same geodesics as V7)
= g(VxY,Z) = g(V4Y,Z)+ 5 T(X,Y, Z)

Given a G-structure (G C SO(n)) on (M, g), if there exists a unique V
with skew torsion preserving the structure, V is called characteristic
connection.



A metric connection V on (M, g) has totally skew-symmetric torsion
(skew torsion for brief) if the (0, 3)-tensor field

T(X,Y,Z) =g(VxY - VyX — [X,Y],2)
is a 3-form (< same geodesics as V7)
= g(VxY,Z) = g(V&Y,2)+3T(X,Y,Z)

Given a G-structure (G C SO(n)) on (M, g), if there exists a unique V
with skew torsion preserving the structure, V is called characteristic
connection.

Theorem (Friedrich-lvanov, 2002)

An almost contact metric manifold (M, ¢,&,n,g) admits a unique metric
connection V with totally skew symmetric torsion, and such that
Vn=VE&=Vy =0, if and only if

1. the tensor N, := [p, @] + dn ® £ is totally skew-symmetric,
2. & is a Killing vector field.

In particular, it exists for a-Sasaki manifolds and its torsion 7' =1 A dn is
parallel.



Almost 3-contact metric manifolds
(M43 0 &,miy9), i = 1,2, 3 is almost 3-contact metric manifold if
@ each structure (¢;,&;, i, g) is almost contact metric
@ on the vertical distribution V := (£1,&s,&3):

vilj =& = —9;& (= &1, &2, &s are orthogonal)
o on the horizontal distribution H := V- = (>_, kern;:
Pivj = Pk = —PjPi

for every even permutation (i, j, k) of (1,2,3).



Almost 3-contact metric manifolds
(M43 0 &,miy9), i = 1,2, 3 is almost 3-contact metric manifold if
@ each structure (¢;,&;, i, g) is almost contact metric
@ on the vertical distribution V := (£1,&s,&3):

0il; =& = —p;& (= &1, &2, & are orthogonal)

o on the horizontal distribution H := V- = (>_, kern;:

PiP; = Pk = —PjPi

for every even permutation (i, j, k) of (1,2,3).Then,
@ structure group reducible to Sp(n) x {13}
e M is said to be hypernormal if N, =0, i =1,2,3.
@ 3-a-Sasakian if each structure is a-Sasakian

@ 3-Sasakian if each structure is Sasakian = Einstein!

Theorem (Kashiwada, 2001)
If dn; = 2®;,i=1,2,3, then M is hypernormal (and thus 3-Sasakian).



The associated sphere of structures

An almost 3-contact metric manifold (M, ¢;,&;,7:,g) carries a sphere
Y 2 52 of almost contact metric structures.

For every a = (a1, as,as3) € R? such that a? + a3 + a3 = 1, put

3 3 3
Pa = Gipi, fa= il TNa=Y a1
i—1 i=1 i=1
Then (pa,&a, M4, 9) is an almost contact metric structure.

Theorem (Cappelletti Montano - De Nicola - Yudin, 2016)
If Ny, =0 forall i =1,2,3, then N, =0 for all ¢ € X).

Theorem

If each N, is skew symmetric on H (respectively on TM ), then for all
@ € Xy, Ny is skew symmetric on H (respectively on TM ).



Proposition

Let (M, p;,&,m:i,g) be a almost 3-contact metric manifold. If each
(¢is&i,mi,9), @ = 1,2,3 admits a characteristic connection, the same
holds for every structure in the sphere.



Proposition

Let (M, ;,&i,m,9) be a almost 3-contact metric manifold. If each
(pi, &y miyg), i =1,2,3 admits a characteristic connection, the same
holds for every structure in the sphere.

Do these connections coincide?

Is it possible to find a metric connection with skew torsion
parallelizing ALL the structure tensor fields?




Proposition

Let (M, ;,&i,m,9) be a almost 3-contact metric manifold. If each
(pi, &y miyg), i =1,2,3 admits a characteristic connection, the same
holds for every structure in the sphere.

Do these connections coincide?

Is it possible to find a metric connection with skew torsion
parallelizing ALL the structure tensor fields?

! For a 3-Sasakian manifold the characteristic connection of the
structure (¢4, &, 74, 9) is

, 1
V1:V9+§T¢, T; = ni N dn;.
For i # j, T; # T; and thus V' # V7.

We need to relax the requirement that the structure should be parallel



Canonical connection for 7-dimensional 3-Sasaki manifolds
(Agricola-Friedrich, 2010)

Let (M, ¢;,&;,7:,9) be a 7-dimensional 3-Sasakian manifold.
The 3-form

1
W3=§zi:77i/\d77i+477123 Ma3 =M A2 A3

defines a cocalibrated Ga-structure and hence admits a characteristic
connection V; its torsion is

3
T = Z ;i A dn;
i=1

V is called the canonical connection, and verifies the following:
@ it preserves H and V,
o VI =0,

@ V admits a parallel spinor v, called canonical spinor, such that the
Clifford products &; - ¢ are exactly the 3 Riemannian Killing spinors.



Canonical connection for quaternionic Heisenberg groups

N, connected, simply connected 2-step nilpotent Lie group with Lie
algebra

n, = Span(&la 627 £3a Try Tp+rs T2p+7r; T3p+r)a r=1,...,p,
and non-vanishing commutators (A > 0):
[Tra 7'p+r] =X [Try T2p+r] = A& [Tra T3p+r] = A3
[7—2;0-‘1-7‘) T3p+r] = A& [7-3p+r7 Tp—i—r] = A2 [Tp+T7 7—2p+r} = A&s.

N, admits an almost 3-contact metric structure (¢;,&;,7;, ga):
7; dual 1-form of &;
g Riemannian metric such that {&;,7;} is orthonormal

p
pi = NG MR+ Z[or ® Tipyr = ipyr O Tr

r=1

+0jp+r @ Thptr — Okptr @ Tjpr]
(0;,1=1,...,4p, dual 1 — form of 1)
The structure is hypernormal with d®; # 0.



The canonical connection (Agricola-Ferreira-Storm, 2015) is the metric
connection V with skew torsion
3

T = Z ni A d?], —4 )\7]123
i=1
It satisfies:
o VI = VR =0 ~ naturally reductive homogeneous space,

e hol(V) ~ su(2), acting irreducibly on V and H.



The canonical connection (Agricola-Ferreira-Storm, 2015) is the metric
connection V with skew torsion
3

T = Z ni A dn; —4 X 1123
i=1
It satisfies:

o VI = VR =0 ~ naturally reductive homogeneous space,
e hol(V) ~ su(2), acting irreducibly on V and H.

In the 7-dimensional case, V is the characteristic connection of the
cocalibrated G5 structure

w=—m A (O12 + 034) — 12 A (613 + 042) — N3 A (614 + b23) + M123.

Then, it admits a parallel spinor field v and the spinor fields v, := &; - 1,
i =1,2,3, are generalised Killing spinors:

A A . 5\
Vévi =586 i, Vii= 586 4 (i #]), Viyi= X -4 X eH



Given an almost 3-contact metric manifold (M, v;,&,m:,g), on the
metric cone
(M,3) = (M x R",a®r’g 4+ dr?), a >0,

one can define an almost hyperHermitian structure (g, Jy, Jo, J3).

Well-known:
e the metric cone of a 3-Sasakian manifold is hyper-Kahler

e the metric cone of the quaternionic Heisenberg group is a
hyper-Kéhler manifold with torsion (‘HKT manifold")

Agricola-Hall, 2015: Criterion when the metric cone (for suitable a > 0)
is a HKT manifold (but unclear what a ‘good’ large class of manifolds
satisfying the criterion could be)



Given an almost 3-contact metric manifold (M, v;,&,m:,g), on the
metric cone
(M,3) = (M x R",a®r’g 4+ dr?), a >0,

one can define an almost hyperHermitian structure (g, Jy, Jo, J3).

Well-known:
e the metric cone of a 3-Sasakian manifold is hyper-Kahler

e the metric cone of the quaternionic Heisenberg group is a
hyper-Kéhler manifold with torsion (‘HKT manifold")

Agricola-Hall, 2015: Criterion when the metric cone (for suitable a > 0)
is a HKT manifold (but unclear what a ‘good’ large class of manifolds
satisfying the criterion could be)

Is it possible to find a larger class of
almost 3-contact metric manifolds
with similar properties?




3-(«, §)-Sasaki manifolds

Definition
3-(av, 0)-Sasaki manifold is an almost 3-contact metric manifold
(M7 Pis giv Mis g) such that

dni = 2a®; 4 2(a — 8)nj A,

a € R* 6 eR, (i,7,k) even permutation of (1,2,3).



3-(«, §)-Sasaki manifolds

Definition
A 3-(«v, §)-Sasaki manifold is an almost 3-contact metric manifold
(M7 Pis gi? Mis g) such that

dn; = 2a®@; + 2(ov — O)n; A g,

a € R* 6 eR, (i,7,k) even permutation of (1,2,3).

@ 3-a-Sasakian manifolds: dn; = 2a®; ~ a =9
e quat. Heisenberg groups: dn; = A(®; +1n; Ang) ~» 200 =X,0=0
We call the structure degenerate if § = 0 and nondegenerate otherwise.



3-(«, §)-Sasaki manifolds

Definition
A 3-(av, 0)-Sasaki manifold is an almost 3-contact metric manifold
(M, i, &,mi,g) such that

dn; = 2a®@; + 2(ov — O)n; A g,

a € R* 6 eR, (i,7,k) even permutation of (1,2,3).

@ 3-a-Sasakian manifolds: dn; = 2a®; ~ a =9
e quat. Heisenberg groups: dn; = A(®; +1n; Ang) ~» 200 =X,0=0
We call the structure degenerate if § = 0 and nondegenerate otherwise.

Theorem
@ The structure is hypernormal (generalization of Kashiwada's thm,
case . =9).

o The distribution V is integrable with totally geodesic leaves.
e Each&; is a Killing vector field, and [§;, &;] = 26&;,.



Definition
An H-homothetic deformation of an almost 3-contact metric strucure
(¢is&isnir 9) Is given by
3
1
mo=cn, §=-&  di=¢i, g =ag+b) memn,
i i=1
a,b,ceR,a>0,c2=a+b>0.

If (<p17 fi’ Mis g) is 3_(0[7 5)_Sasaki' then (90;7 g;v 7725 gl) is 3_(0/7 5/)_Sasaki
with c S
o =a—, =
a c
o the class of degenerate 3-(«, )-Sasaki structures is preserved
@ in the non-degenerate case, the sign of ad is preserved.

Definition

We say that a 3-(«, 6)-Sasaki manifold is positive (resp. negative) if
ad >0 (resp ad < 0).

Proposition

ad > 0 <= M is H-homothetic to a 3-Sasakian manifold (. =6 =1)
ad < 0 <= M is H-homothetic to one with o« = —1, § = 1.



Do there exist 3-(«, 0)-Sasaki manifolds with ad < 07
YES - here is the construction:
Definition
A negative 3-Sasakian manifold is a normal almost 3-contact manifold

(M*+3 0, &;,m;) endowed with a compatible semi-Riemannian metric §
of has signature (3,4n) such that dn;(X,Y) = 29(X, ¢;Y).

Proposition
If (M, i, &,1:,g) s a negative 3-Sasakian manifold, take
3
g=—=G+2) n@n
i=1

Then (pi,&,mi, ) is a 3-(a, §)-Sasaki structure with o = —1 and 6 = 1.

It is known that quaternionic Kahler (not hyperKahler) manifolds with
negative scalar curvature admit a canonically associated principal
SO(3)-bundle P(M) which is endowed with a negative 3-Sasakian
structure (Konishi, 1975 - Tanno, 1996).



p-compatible connections

Definition

Let (M, ;,&i,ni,9) be an almost 3-contact metric manifold, (¢,£,n,g)

a structure in the associated sphere ¥5;. Let V be a metric connection

with skew torsion on M. We say that V is a w-compatible connection if

1) V preserves the splitting TM = H @V,
2) (Vxp)Y =0 vX,Y e T'(H).



p-compatible connections

Definition

Let (M, ;,&i,ni,9) be an almost 3-contact metric manifold, (¢,£,n,g)
a structure in the associated sphere ¥5;. Let V be a metric connection
with skew torsion on M. We say that V is a w-compatible connection if

1) V preserves the splitting TM = H @V,
2) (Vxp)Y =0 vX,Y e T'(H).

Theorem
M admits a p-compatible connection if and only if

1) N, is skew-symmetric on H;
2) (L&,9)(X,Y) =0 forevery X,Y € T'(H) and i =1,2,3;
3) (Lxg)(&, &) =0 forevery X € T'(H) and i,j =1,2,3.

Remark If each ¢; is Killing, 2) and 3) hold.



' (o-compatible connections are not uniquely determined

they are parametrized by their parameter function

v :=T(&1,&2,83) € C(M).



' (o-compatible connections are not uniquely determined

they are parametrized by their parameter function

V= T(€1,§2,§3) S COO(M)

V; =0 is too strong

p-compatibility is too weak




' (o-compatible connections are not uniquely determined

they are parametrized by their parameter function

v :=T(&1,&2,83) € C(M).

V; =0 is too strong

p-compatibility is too weak

~~ suppose V preserves the 3-dimensional distribution in End(T'M)
spanned by ¢; as do quaternionic connections (qK case):

Vxpi = Blnk(X)p; —nj(X)er) VX € X(M)

for every (i, 7, k) even permutation of (1,2, 3).



The canonical connection: general existence

Theorem

An almost 3-contact metric manifold (M, ¢;,&;,m;, g) admits a metric
connection V with skew torsion such that for some smooth function (3,

Vxgi = Bme(X)p; —ni(X)er) VX € X(M)

for every even permutation (i,j,k) of (1,2,3), if and only if
1)
2)
3)

)



The canonical connection: general existence

Theorem

An almost 3-contact metric manifold (M, ¢;,&;,m;, g) admits a metric
connection V with skew torsion such that for some smooth function (3,

Vxgi = Bme(X)p; —ni(X)er) VX € X(M)
for every even permutation (i,j,k) of (1,2,3), if and only if
1) each & is a Killing vector field,
2)
3)

)



The canonical connection: general existence

Theorem

An almost 3-contact metric manifold (M, ¢;,&;,m;, g) admits a metric
connection V with skew torsion such that for some smooth function (3,

Vxgi = Bme(X)p; —ni(X)er) VX € X(M)
for every even permutation (i,j,k) of (1,2,3), if and only if
1) each & is a Killing vector field,
2) each N, is totally skew-symmetric on H,

3)

1)



The canonical connection: general existence

Theorem

An almost 3-contact metric manifold (M, ¢;,&;,m;, g) admits a metric
connection V with skew torsion such that for some smooth function (3,

Vxgi = Bme(X)p; —ni(X)er) VX € X(M)
for every even permutation (i,j,k) of (1,2,3), if and only if
1) each & is a Killing vector field,
2) each N, is totally skew-symmetric on H,
3) forany XY, Z € T(H) and any i,j = 1,2,3,
N, (X,Y, Z) — d®i(0. X, .Y, 0:2) = Ny, (X,Y, Z) — (X, 0,Y, 0, 2),
1)



The canonical connection: general existence

Theorem

An almost 3-contact metric manifold (M, ¢;,&;,m;, g) admits a metric
connection V with skew torsion such that for some smooth function (3,

Vxgi = Bme(X)p; —ni(X)er) VX € X(M)
for every even permutation (i,j,k) of (1,2,3), if and only if
1) each & is a Killing vector field,
2) each N, is totally skew-symmetric on H,
3) forany XY, Z € T(H) and any i,j = 1,2,3,
N, (XY, Z) — dbi(pi X 9:Y, 0.2) = Ny, (X, Y, Z) — A, (X, 0¥, 0, 2),
4) B is a Reeb Killing function, that is
Aui(X,Y) =0, A (X)Y)=—-4,;(X)Y) = BP(X,Y)
Aii(X,Y) = g((Le; i) X, Y) + dn;(X, iY) + dnj(0: X, Y)
for every X, Y € T'(H) and even permutation (i, j, k) of (1,2,3).



If such a connection V exists, it is unique and ¢-compatible for every
almost contact metric structure ¢ in the associated sphere X ;.

V is called the canonical connection of M. It satisfies

Vxpi = B (X)p; —nj(X)wr),
Vx& =B
Vxni = Bnk(X)n; — n; (X)nk).

If =0, then Vyp; = V& = Vn; =0.
Definition

We say that an almost 3-contact metric manifold is canonical if it admits
a (unique) canonical connection.

If3=0 (e A;; =0Vi,j=1,2,3) M will be called parallel canonical.



The canonical connection V satisfies
VU =0, V23 =0,
U= Py ADy + $Py A Py + P3 A P3, fundamental 4-form. In particular
hol(V) C (sp(n) @ sp(1)) @ s0(3) C so(4n) @ s0(3).

For parallel canonical manifolds (5 = 0): hol(V) C sp(n)



The canonical connection V satisfies
VU =0, Vi3 =0,
U= Py ADy + $Py A Py + P3 A P3, fundamental 4-form. In particular
hol(V) C (sp(n) @ sp(1)) @ s0(3) C so(4n) @ s0(3).
For parallel canonical manifolds (5 = 0): hol(V) C sp(n)

Theorem

For a canonical manifold, each structure (v;,&;,m:,9) (and thus each
© € X)) admits a characteristic connection V*, which is related to V by

. p
V=V"-— E(V]j A\ (I)j + N N (Pk)
(4,4, k) even permutation of (1,2,3).

For 3 =0: V! =V? = V3 = V. [first known examples where this happens!]



Theorem

Every 3-(«v, §)-Sasaki manifold is canonical with 8 = 2(0 — 2).

It is parallel canonical iff § = 2« (= ad > 0).

The canonical connection of a 3-(«, §)-Sasaki manifold has torsion

3
T = Zm Adn; + 8(0 — @) 123

i=1

and satisfies V1 = 0.
@ 3-a-Sasaki manifolds (o =9): T'=)",m; Adn;

@ quat. Heisenberg groups (6 = 0,2ac = \): T'= > . n; Adn; — 4 123
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The geometry of 3-(«, §)-Sasaki manifolds

Using the canonical connection V and applying Agricola-Holl criterion:

Theorem
Let (M, @;,&,m:,9) be a 3-(ar, §)-Sasaki manifold. Then the metric cone
(M’g) = (M x R+,a2r2g+dr2), a= _g

is HKT manifold.



The geometry of 3-(«, §)-Sasaki manifolds

Using the canonical connection V and applying Agricola-Holl criterion:

Theorem
Let (M, @;,&,m:,9) be a 3-(ar, §)-Sasaki manifold. Then the metric cone
(M’g) = (M x R+,Q2T2g+dr2), a = _g

is HKT manifold.

Moreover, every 3-(a, §)-Sasakian manifold admits an underlying
quaternionic contact structure, and the canonical connection turns out to
be a quaternionic contact connection. In fact, it is qc-Einstein (lvanov -
Minchev - Vassilev, 2016) and this allows to determine the Riemannian
Ricci curvature:



Theorem

The Riemannian Ricci curvature of a 3-(«, 0)-Sasaki manifold is

Ric? = 2a(26(n +2) — 3a)g + 2(a — 8)((2n + 3)or — an ® n;

The V-Ricci curvature is

3
Ric = 4af{o(n + 2) — 3a} g + 4a{d(2 — n) — ba} Z 7 @ 1.

i=1

The property of being symmetric follows for Ric from VT = 0.



Theorem

The Riemannian Ricci curvature of a 3-(«, 0)-Sasaki manifold is

Ric? = 20(26(n +2) — 3a)g + 2(a — 8)((2n + 3)a — Zn, & n;

The V-Ricci curvature is

3
Ric = 4a{6(n +2) — 3a} g + 4a{d(2 —n) — 5a} > _n; @ ni.

i=1
The property of being symmetric follows for Ric from VT = 0.
e M is Riemannian Einstein iff & = § or 6 = (2n + 3)av.
@ The manifold is V-Einstein iff 6(2 —n) = 5av.

@ The manifold is both Riemannian Einstein and V-Einstein if and
only if dim M = 7 and 6 = 5« (happens for example for ‘compatible’
nearly parallel Ga-str., see next).



7-dimensional 3-(«, §)-Sasaki manifolds

Theorem

Any T-dimensional 3-(«, §)-Sasaki manifold admits a a cocalibrated
Go-structure (Fernandez-Gray type Wy @ Ws) given by the 3-form

3
w o= Zm ADH 4 1133,
i=1
Its characteristic connection ¥V coincides with the canonical connection.

This Ga-structure defines a unique canonical spinor field g such that

Vo = 0, w-tpg =Ty, || =1



Theorem
@ The canonical spinor field v is a generalized Killing spinor:

3 2
V1o = ,£X¢O for X € M, V= ——

Y?,[}Q forY e V.

The two generalized Killing numbers coincide iff 6 = ba,
corresponding to a nearly parallel Gy-structure. (Gray-Fernandez

type W)
[6 = 5 is the only case where M s Einstein and V-Einstein].

@ The Clifford products v; :== &; - 1o, i = 1,2,3, are generalized Killing
spinors:

36
1/}1— fz %7 ngdh‘: 5] wz (3&])’

%— “x. P for X € H.

Any two of the generalized K///mg numbers coincide iff o = 6, i.e. if
M7 is 3-a-Sasakian.



Homogeneous 3-Sasakian manifolds

Theorem (Boyer, Galicki, Mann, 1994)

Let (M, @;,&;,m:,9) be a homogeneous 3-Sasakian manifold. Then M is
one of the following homogeneous spaces:

Sp(n+1) Sp(n+1) SU(m + 2) SO(k +4)
Sp(n) ’ Sp(n) X Zs’ S(U(m) x U(1))’ SO(k) x Sp(1)’
Go Fy4 Eg E~; %
Sp(1)’ Sp(3)’ Su(6)’ Spin(12)’ E;

Heren >0, m>1 and k > 3.
; 4n+3 ~, Sp(n+l)
@ They are all simply connected except for RP*" 72 ~ Sp(n)xZa
@ 1-1 correspondence between simply connected 3-Sasakian
homogeneous manifolds and compact simple Lie algebras



Uniform description of homogeneous 3-Sasakian manifolds
(Draper, Ortega, Palomo, 2018)
Definition
A 3-Sasakian data is a triple (G, Go, H) of Lie groups such that

e G is a compact, simple Lie Group

e H C Gy C G connected Lie subgroups
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and the Lie algebras b C go C g satisfy:
e go = h@sp(l) with sp(1) and b commuting subalgebras,
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dim¢e W = 2n,



Uniform description of homogeneous 3-Sasakian manifolds
(Draper, Ortega, Palomo, 2018)

Definition
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and the Lie algebras h C go C g satisfy:
e go = h D sp(l) with sp(1) and h commuting subalgebras,
o (g,90) form a symmetric pair, g = go © g1,

e the complexification g7 = C? @c W for some h©-module of
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Uniform description of homogeneous 3-Sasakian manifolds
(Draper, Ortega, Palomo, 2018)

Definition
A 3-Sasakian data is a triple (G, Go, H) of Lie groups such that
e G is a compact, simple Lie Group
e H C Gy C G connected Lie subgroups
and the Lie algebras h C go C g satisfy:
e go = h D sp(l) with sp(1) and h commuting subalgebras,
o (g,90) form a symmetric pair, g = go © g1,

e the complexification g7 = C? @c W for some h©-module of
dim¢e W = 2n,
o hC sp(1)® C g§ act on gT by their action on W and C2.

Remark In total the Lie algebra decomposes as
g0
/—/\ﬁ . .
g=hasp(l) e g (m is a reductive complement for M = G /H)
—_——

m



Homogeneous 3-Sasakian model

Theorem (Draper, Ortega, Palomo, 2018)

Let (G, Gy, H) be 3-Sasakian data. On M = G /H consider the
G-invariant structure defined by the Ad(H)-invariant tensors on m:

@ the inner product g
—K —K

g‘sp(l) T An+2) g‘gl T 8(n+2) g}sp(l)xgl =0

K the Killing form on G.
@ {; =o0;,1=1,2,3, 0; standard basis of sp(1)=V Cgo, 7;: = 9(&, ")

@ the endomorphisms p; as
1
<Pi|5p(1) =3 ad(&;), <Pi|g1 = ad(&;).
Then (M, ;,&;,1:,9) defines a homogeneous 3-Sasakian manifold.

Conversely every homogeneous 3-Sasakian manifold M # RP4"+3 js
obtained by this construction.

Remark: M fibers over the quaternion Kahler symmetric space G/G.
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Homogeneous positive 3-(«, §)-Sasakian model

Idea: Use H-homothetic deformation to obtain 3-(«, §)-Sasakian mnfds
for ad >0

Theorem

Let (G,Gy, H) be 3-Sasakian data, a6 > 0. On M = G /H consider the
G-invariant structure by the Ad(H)-invariant tensors on m:

—K —K
g|5p(1) = 452(n+2)7 g’gl = 8(¥5(n+2)’ g’ﬁp(l)xgl =

gi :60'1'5 i :g(fla)

1
Pi ’5;:(1) (§1> Pi ’91 (fz)

Then (M, p;,&,m;,g) defines a homogeneous 5—((1, 0)-Sasakian mnfd.

Conversely every homogeneous 3-(«v, §)-Sasakian manifold M # RP4"+3
with ad > 0 is obtained by this construction.

Remark: (G/H,g) is naturally reductive < § = 2a < parallel 3-(a, d).
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and the Lie algebras h C go C g satisfy:
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Generalized setup

Definition
A generalized 3-Sasakian data is a triple (G, Gy, H) of Lie groups such
that
e G is a real simple Lie Group
e H C Gy C G connected Lie subgroups
and the Lie algebras h C go C g satisfy:
e go = h@sp(l) with sp(1) and b commuting subalgebras,
o (g,90) form a symmetric pair, g = go © g1,
o the complexification g = C? @c W for some h®-module of
dim¢e W = 2n,
o hC sp(1)® C g§ act on gT by their action on W and C2.

If (g,90) is a compact symmetric pair such that (G, Gy, H) is 3-Sasakian
data, then (G*, Gy, H) is generalized 3-Sasakian data, where (g*, go) is
the dual non-compact symmetric pair.



Negative homogeneous 3-(«, §)-Sasakian manifolds

Theorem
Let (G*,Go, H) be non-compact generalized 3-Sasakian data, ad < 0.

On M = G*/H consider the G*-invariant structure defined by the
Ad(H)-invariant tensors on m

K —K
9 opry = 402(n 1 2) 9lg, = 8ad(n+2) 9l p(1) o =

é-i :50'1‘, i :g(é-iu')a

1
= 5 ad(gz)v

k the Killing form on G*, o; standard basis sp(1) =V C go.

1
@i|5p(1) = 2763'(:1(51)7 Soi|gl

Then (M, g,&,mi, i) defines a homogeneous 3-(c, §)-Sasakian manifold.

Question: Does this model cover all homogenous negative 3-(«, §)-Sasaki
manifolds?



In total we obtain homogeneous 3-(«, §)-Sasakian structures on the

following list of homogeneous spaces (G/H compact, G*/H

non-compact):

G G* H Gy dim
Sp(n+1) | Sp(n,1) Sp(n) Sp(n)Sp(1) |4n+3
SU(n +2) | SU(n,2) | S(UM) x U(1)) | S(UMU2)) | 4n+3
SO(n+4) | SO(n,4) | SO(n) x Sp(1) | SO(n)SO(4) | 4n+3

Gs G2 Sp(1) SO(4) 11
F4 F; % Sp(3) Sp(3)Sp(1) 31
Eg E2 Su(6) SU(6)Sp(1) 43
E; E.° Spin(12) Spin(12)Sp(1) | 67
Esg Eg 2 E; E-Sp(1) 115
Remark: RP*+3 = ;pp((n';ilzl and non compact dual Szl(’fl;“;_%z also
admit 3-(c, §)-Sasaki structures, as the quotient of S4"+3 = %&’;),

Sp(n,1)

resp. =50

by Zs inside the fiber.



Definiteness of curvature operators

Consider the Riemannian curvature as a symmetric operator
RY:AN*M — N*M (RIYXAY),ZAV)=—g(R(X,Y)Z,V).

Definition
A Riemannian manifold (M, g) is said to have strongly positive curvature

if there exists a 4-form w such that RY + w is positive-definite at every
point x € M (Thorpe, 1971).

For every 2-plane o, being (w(o),o) =0, one has
sec(o) = (R9(0),0) = (R + w)(0),0).
Then,
RYI > 0 = strongly positive curvature = positive sectional curvature

RYI > 0 = strongly non-negative curvature => non-negative sec. curv.



On a 3-(a, §)-Sasakian manifold the symmetric operators defined by the
Riemannian curvature and the curvature of the canonical connection:

RIA2M — A°M R:A’M — A’M

are related by
1

1
R‘q — EO—T: R + ZgT
with
(Gr(X AY),ZAV)=g(T(X,Y),T(Z,V)),
(or(XANY),ZAV):= %dT(X,Y,Z7 V).

(M, g) is strongly non-negative with 4-form —{o7 if and only if

1
R+ ZQTZO'

Being G > 0, if R > 0 we directly have strong non-negativity.



Theorem

Let M be a homogeneous 3-(«, §)-Sasakian manifold obtained from a
generalized 3-Sasakian data.

@ Ifad <0 then R < 0.

o Ifad > 0 then
R >0 ifand only if a8 > 0

Then, on a positive homogeneous 3-(«, §)-Sasaki manifold with a8 > 0:

1 1
Rg_EUT:R“rngZO-

The converse also holds, i.e.

Theorem

A positive homogeneous 3-(«v, §)-Sasaki manifold is strongly non-negative
with 4-form fﬁar[ if and only if a3 > 0.



Strong positivity is much more restrictive than strong non-negativity.
Strong positivity implies strict positive sectional curvature.

Homogeneous manifolds with strictly positive sectional curvature have
been classified (Wallach 1972, Bérard Bergery 1976).

Only the 7-dimensional Aloff-Wallach-space W1, the spheres S4"*3 and
real projective spaces RP*"*3 admit homogeneous 3-(c, §)-Sasaki
structures.

Theorem

The 3-(«, 6)-Sasakian spaces
o W1 =8U(3)/S" with 4-form —( + £)or for small € > 0,
o S4nt3 RpAnt3 n > 1, with 4-form %(TT|A4H — (%l +¢e)or for
small e >0
are strongly positive if and only if a8 > 0.
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