Bedlewo, October 2019

Dirac operators in differential geometry and global analysis - in memory of Thomas Friedrich

Generalizations of 3-Sasakian manifolds and connections with skew torsion

Giulia Dileo
University of Bari (Italy)

Joint work with Ilka Agricola and Leander Stecker (Marburg)

Context: Geometry of almost 3-contact metric manifolds

Goals \& Motivation

Define and investigate new classes of such manifolds:

- the Levi-Civita connection is not well-adapted to the structure
- look for 'good' metric connections with skew torsion

In particular,

- introduce notion of φ-compatible connections,
- make them unique by a certain extra condition \rightarrow canonical connection,
- define the new class of canonical almost 3-contact metric manifolds
- define and study 3-($\alpha, \delta)$-Sasaki manifolds
- compute torsion, holonomy, curvature of the canonical connection,
- provide lots of examples, classify the homogeneous ones, further applications (metric cone, existence of generalized Killing spinors. . .)

Almost contact metric structures

($M^{2 n+1}, \varphi, \xi, \eta, g$) almost contact metric manifold if

- ξ is a vector field ξ, called the Reeb vector field,
- $\eta=g(\xi, \cdot)$,
- φ is a (1,1)-tensor field such that $\varphi \xi=0$ and

$$
\varphi^{2}=-I, \quad g(\varphi X, \varphi Y)=g(X, Y) \text { on }\langle\xi\rangle^{\perp}=\operatorname{ker} \eta .
$$

Equivalently, the structural group is reducible to $U(n) \times\{1\}$.

Almost contact metric structures

($M^{2 n+1}, \varphi, \xi, \eta, g$) almost contact metric manifold if

- ξ is a vector field ξ, called the Reeb vector field,
- $\eta=g(\xi, \cdot)$,
- φ is a (1,1)-tensor field such that $\varphi \xi=0$ and

$$
\varphi^{2}=-I, \quad g(\varphi X, \varphi Y)=g(X, Y) \text { on }\langle\xi\rangle^{\perp}=\operatorname{ker} \eta .
$$

Equivalently, the structural group is reducible to $U(n) \times\{1\}$.
Then,

- the fundamental 2 -form is defined by

$$
\Phi(X, Y)=g(X, \varphi Y),
$$

- it is called normal if $N_{\varphi}:=[\varphi, \varphi]+d \eta \otimes \xi \equiv 0$,
- α-Sasakian, $\alpha \in \mathbb{R}^{*}$, if $\mathrm{d} \eta=2 \alpha \Phi, \quad N_{\varphi} \equiv 0 \quad(\Rightarrow \xi$ Killing)
- Sasakian if 1-Sasakian.

A metric connection ∇ on (M, g) has totally skew-symmetric torsion (skew torsion for brief) if the (0,3)-tensor field

$$
T(X, Y, Z):=g\left(\nabla_{X} Y-\nabla_{Y} X-[X, Y], Z\right)
$$

is a 3 -form (\Leftrightarrow same geodesics as ∇^{g})

$$
\Rightarrow \quad g\left(\nabla_{X} Y, Z\right)=g\left(\nabla_{X}^{g} Y, Z\right)+\frac{1}{2} T(X, Y, Z)
$$

Given a G-structure $(G \subset S O(n))$ on (M, g), if there exists a unique ∇ with skew torsion preserving the structure, ∇ is called characteristic connection.

A metric connection ∇ on (M, g) has totally skew-symmetric torsion (skew torsion for brief) if the (0,3)-tensor field

$$
T(X, Y, Z):=g\left(\nabla_{X} Y-\nabla_{Y} X-[X, Y], Z\right)
$$

is a 3 -form (\Leftrightarrow same geodesics as ∇^{g})

$$
\Rightarrow \quad g\left(\nabla_{X} Y, Z\right)=g\left(\nabla_{X}^{g} Y, Z\right)+\frac{1}{2} T(X, Y, Z)
$$

Given a G-structure $(G \subset S O(n))$ on (M, g), if there exists a unique ∇ with skew torsion preserving the structure, ∇ is called characteristic connection.

Theorem (Friedrich-Ivanov, 2002)
An almost contact metric manifold (M, φ, ξ, η, g) admits a unique metric connection ∇ with totally skew symmetric torsion, and such that $\nabla \eta=\nabla \xi=\nabla \varphi=0$, if and only if

1. the tensor $N_{\varphi}:=[\varphi, \varphi]+d \eta \otimes \xi$ is totally skew-symmetric,
2. ξ is a Killing vector field.

In particular, it exists for α-Sasaki manifolds and its torsion $T=\eta \wedge d \eta$ is parallel.

Almost 3-contact metric manifolds

$\left(M^{4 n+3}, \varphi_{i}, \xi_{i}, \eta_{i}, g\right), i=1,2,3$ is almost 3 -contact metric manifold if

- each structure $\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ is almost contact metric
- on the vertical distribution $\mathcal{V}:=\left\langle\xi_{1}, \xi_{2}, \xi_{3}\right\rangle$:

$$
\varphi_{i} \xi_{j}=\xi_{k}=-\varphi_{j} \xi_{i} \quad\left(\Rightarrow \xi_{1}, \xi_{2}, \xi_{3} \text { are orthogonal }\right)
$$

- on the horizontal distribution $\mathcal{H}:=\mathcal{V}^{\perp}=\bigcap_{i=1}^{3} \operatorname{ker} \eta_{i}$:

$$
\varphi_{i} \varphi_{j}=\varphi_{k}=-\varphi_{j} \varphi_{i}
$$

for every even permutation (i, j, k) of $(1,2,3)$.

Almost 3-contact metric manifolds

$\left(M^{4 n+3}, \varphi_{i}, \xi_{i}, \eta_{i}, g\right), i=1,2,3$ is almost 3 -contact metric manifold if

- each structure $\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ is almost contact metric
- on the vertical distribution $\mathcal{V}:=\left\langle\xi_{1}, \xi_{2}, \xi_{3}\right\rangle$:

$$
\varphi_{i} \xi_{j}=\xi_{k}=-\varphi_{j} \xi_{i} \quad\left(\Rightarrow \xi_{1}, \xi_{2}, \xi_{3} \text { are orthogonal }\right)
$$

- on the horizontal distribution $\mathcal{H}:=\mathcal{V}^{\perp}=\bigcap_{i=1}^{3} \operatorname{ker} \eta_{i}$:

$$
\varphi_{i} \varphi_{j}=\varphi_{k}=-\varphi_{j} \varphi_{i}
$$

for every even permutation (i, j, k) of $(1,2,3)$.Then,

- structure group reducible to $\operatorname{Sp}(n) \times\left\{1_{3}\right\}$
- M is said to be hypernormal if $N_{\varphi_{i}} \equiv 0, i=1,2,3$.
- 3- α-Sasakian if each structure is α-Sasakian
- 3-Sasakian if each structure is Sasakian \Rightarrow Einstein!

Theorem (Kashiwada, 2001)
If $d \eta_{i}=2 \Phi_{i}, i=1,2,3$, then M is hypernormal (and thus 3 -Sasakian).

The associated sphere of structures

An almost 3-contact metric manifold ($M, \varphi_{i}, \xi_{i}, \eta_{i}, g$) carries a sphere $\Sigma_{M} \cong S^{2}$ of almost contact metric structures.
For every $a=\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}$ such that $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=1$, put

$$
\varphi_{a}=\sum_{i=1}^{3} a_{i} \varphi_{i}, \quad \xi_{a}=\sum_{i=1}^{3} a_{i} \xi_{i}, \quad \eta_{a}=\sum_{i=1}^{3} a_{i} \eta_{i} .
$$

Then $\left(\varphi_{a}, \xi_{a}, \eta_{a}, g\right)$ is an almost contact metric structure.
Theorem (Cappelletti Montano - De Nicola - Yudin, 2016)
If $N_{\varphi_{i}}=0$ for all $i=1,2,3$, then $N_{\varphi}=0$ for all $\varphi \in \Sigma_{M}$.

Theorem

If each $N_{\varphi_{i}}$ is skew symmetric on \mathcal{H} (respectively on $T M$), then for all $\varphi \in \Sigma_{M}, N_{\varphi}$ is skew symmetric on \mathcal{H} (respectively on TM).

Proposition

Let $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be a almost 3 -contact metric manifold. If each $\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right), i=1,2,3$ admits a characteristic connection, the same holds for every structure in the sphere.

Proposition

Let $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be a almost 3 -contact metric manifold. If each $\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right), i=1,2,3$ admits a characteristic connection, the same holds for every structure in the sphere.

Do these connections coincide?
Is it possible to find a metric connection with skew torsion parallelizing ALL the structure tensor fields?

Proposition

Let $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be a almost 3 -contact metric manifold. If each $\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right), i=1,2,3$ admits a characteristic connection, the same holds for every structure in the sphere.

Do these connections coincide?

Is it possible to find a metric connection with skew torsion parallelizing ALL the structure tensor fields?
! For a 3-Sasakian manifold the characteristic connection of the structure $\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ is

$$
\nabla^{i}=\nabla^{g}+\frac{1}{2} T_{i}, \quad T_{i}=\eta_{i} \wedge d \eta_{i}
$$

For $i \neq j, T_{i} \neq T_{j}$ and thus $\nabla^{i} \neq \nabla^{j}$.
We need to relax the requirement that the structure should be parallel

Canonical connection for 7-dimensional 3-Sasaki manifolds

 (Agricola-Friedrich, 2010)Let $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be a 7 -dimensional 3-Sasakian manifold.
The 3 -form

$$
\omega:=\frac{1}{2} \sum_{i} \eta_{i} \wedge d \eta_{i}+4 \eta_{123} \quad \eta_{123}:=\eta_{1} \wedge \eta_{2} \wedge \eta_{3}
$$

defines a cocalibrated G_{2}-structure and hence admits a characteristic connection ∇; its torsion is

$$
T=\sum_{i=1}^{3} \eta_{i} \wedge d \eta_{i}
$$

∇ is called the canonical connection, and verifies the following:

- it preserves \mathcal{H} and \mathcal{V},
- $\nabla T=0$,
- ∇ admits a parallel spinor ψ, called canonical spinor, such that the Clifford products $\xi_{i} \cdot \psi$ are exactly the 3 Riemannian Killing spinors.

Canonical connection for quaternionic Heisenberg groups

N_{p} connected, simply connected 2-step nilpotent Lie group with Lie algebra

$$
\mathfrak{n}_{p}=\operatorname{span}\left(\xi_{1}, \xi_{2}, \xi_{3}, \tau_{r}, \tau_{p+r}, \tau_{2 p+r}, \tau_{3 p+r}\right), \quad r=1, \ldots, p
$$

and non-vanishing commutators $(\lambda>0)$:

$$
\begin{array}{lll}
{\left[\tau_{r}, \tau_{p+r}\right]=\lambda \xi_{1}} & {\left[\tau_{r}, \tau_{2 p+r}\right]=\lambda \xi_{2}} & {\left[\tau_{r}, \tau_{3 p+r}\right]=\lambda \xi_{3}} \\
{\left[\tau_{2 p+r}, \tau_{3 p+r}\right]=\lambda \xi_{1}} & {\left[\tau_{3 p+r}, \tau_{p+r}\right]=\lambda \xi_{2}} & {\left[\tau_{p+r}, \tau_{2 p+r}\right]=\lambda \xi_{3}}
\end{array}
$$

N_{p} admits an almost 3 -contact metric structure ($\varphi_{i}, \xi_{i}, \eta_{i}, g_{\lambda}$):
η_{i} dual 1-form of ξ_{i}
g_{λ} Riemannian metric such that $\left\{\xi_{i}, \tau_{l}\right\}$ is orthonormal

$$
\begin{aligned}
\varphi_{i}= & \eta_{j} \otimes \xi_{k}-\eta_{k} \otimes \xi_{j}+\sum_{r=1}^{p}\left[\theta_{r} \otimes \tau_{i p+r}-\theta_{i p+r} \otimes \tau_{r}\right. \\
& \left.+\theta_{j p+r} \otimes \tau_{k p+r}-\theta_{k p+r} \otimes \tau_{j p+r}\right] \\
\left(\theta_{l}, l=\right. & \left.1, \ldots, 4 p, \text { dual } 1-\text { form of } \tau_{l}\right)
\end{aligned}
$$

The structure is hypernormal with $d \Phi_{i} \neq 0$.

The canonical connection (Agricola-Ferreira-Storm, 2015) is the metric connection ∇ with skew torsion

$$
T=\sum_{i=1}^{3} \eta_{i} \wedge d \eta_{i}-4 \lambda \eta_{123}
$$

It satisfies:

- $\nabla T=\nabla R=0 \rightsquigarrow$ naturally reductive homogeneous space,
- $\mathfrak{h o l}(\nabla) \simeq \mathfrak{s u}(2)$, acting irreducibly on \mathcal{V} and \mathcal{H}.

The canonical connection (Agricola-Ferreira-Storm, 2015) is the metric connection ∇ with skew torsion

$$
T=\sum_{i=1}^{3} \eta_{i} \wedge d \eta_{i}-4 \lambda \eta_{123}
$$

It satisfies:

- $\nabla T=\nabla R=0 \rightsquigarrow$ naturally reductive homogeneous space,
- $\mathfrak{h o l}(\nabla) \simeq \mathfrak{s u}(2)$, acting irreducibly on \mathcal{V} and \mathcal{H}.

In the 7 -dimensional case, ∇ is the characteristic connection of the cocalibrated G_{2} structure

$$
\omega=-\eta_{1} \wedge\left(\theta_{12}+\theta_{34}\right)-\eta_{2} \wedge\left(\theta_{13}+\theta_{42}\right)-\eta_{3} \wedge\left(\theta_{14}+\theta_{23}\right)+\eta_{123} .
$$

Then, it admits a parallel spinor field ψ and the spinor fields $\psi_{i}:=\xi_{i} \cdot \psi$, $i=1,2,3$, are generalised Killing spinors:

$$
\nabla_{\xi_{i}}^{g} \psi_{i}=\frac{\lambda}{2} \xi_{i} \cdot \psi_{i}, \quad \nabla_{\xi_{j}}^{g} \psi_{i}=-\frac{\lambda}{2} \xi_{j} \cdot \psi_{i}(i \neq j), \quad \nabla_{X}^{g} \psi_{i}=\frac{5 \lambda}{4} X \cdot \psi_{i}, X \in \mathcal{H}
$$

Given an almost 3-contact metric manifold ($M, \varphi_{i}, \xi_{i}, \eta_{i}, g$), on the metric cone

$$
(\bar{M}, \bar{g})=\left(M \times \mathbb{R}^{+}, a^{2} r^{2} g+d r^{2}\right), \quad a>0,
$$

one can define an almost hyperHermitian structure ($\bar{g}, J_{1}, J_{2}, J_{3}$).
Well-known:

- the metric cone of a 3-Sasakian manifold is hyper-Kähler
- the metric cone of the quaternionic Heisenberg group is a hyper-Kähler manifold with torsion ('HKT manifold')

Agricola-Höll, 2015: Criterion when the metric cone (for suitable $a>0$) is a HKT manifold (but unclear what a 'good' large class of manifolds satisfying the criterion could be)

Given an almost 3-contact metric manifold ($M, \varphi_{i}, \xi_{i}, \eta_{i}, g$), on the metric cone

$$
(\bar{M}, \bar{g})=\left(M \times \mathbb{R}^{+}, a^{2} r^{2} g+d r^{2}\right), \quad a>0,
$$

one can define an almost hyperHermitian structure ($\bar{g}, J_{1}, J_{2}, J_{3}$).
Well-known:

- the metric cone of a 3-Sasakian manifold is hyper-Kähler
- the metric cone of the quaternionic Heisenberg group is a hyper-Kähler manifold with torsion ('HKT manifold')

Agricola-Höll, 2015: Criterion when the metric cone (for suitable $a>0$) is a HKT manifold (but unclear what a 'good' large class of manifolds satisfying the criterion could be)

Is it possible to find a larger class of almost 3 -contact metric manifolds with similar properties?

3- (α, δ)-Sasaki manifolds

Definition

A 3-($\alpha, \delta)$-Sasaki manifold is an almost 3-contact metric manifold $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ such that

$$
d \eta_{i}=2 \alpha \Phi_{i}+2(\alpha-\delta) \eta_{j} \wedge \eta_{k},
$$

$\alpha \in \mathbb{R}^{*}, \delta \in \mathbb{R},(i, j, k)$ even permutation of $(1,2,3)$.

3- (α, δ)-Sasaki manifolds

Definition

A 3-($\alpha, \delta)$-Sasaki manifold is an almost 3-contact metric manifold $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ such that

$$
d \eta_{i}=2 \alpha \Phi_{i}+2(\alpha-\delta) \eta_{j} \wedge \eta_{k},
$$

$\alpha \in \mathbb{R}^{*}, \delta \in \mathbb{R},(i, j, k)$ even permutation of $(1,2,3)$.

- 3- α-Sasakian manifolds: $d \eta_{i}=2 \alpha \Phi_{i} \rightsquigarrow \alpha=\delta$
- quat. Heisenberg groups: $d \eta_{i}=\lambda\left(\Phi_{i}+\eta_{j} \wedge \eta_{k}\right) \rightsquigarrow 2 \alpha=\lambda, \delta=0$

We call the structure degenerate if $\delta=0$ and nondegenerate otherwise.

3- (α, δ)-Sasaki manifolds

Definition

A 3-($\alpha, \delta)$-Sasaki manifold is an almost 3-contact metric manifold $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ such that

$$
d \eta_{i}=2 \alpha \Phi_{i}+2(\alpha-\delta) \eta_{j} \wedge \eta_{k},
$$

$\alpha \in \mathbb{R}^{*}, \delta \in \mathbb{R},(i, j, k)$ even permutation of $(1,2,3)$.

- 3- α-Sasakian manifolds: $d \eta_{i}=2 \alpha \Phi_{i} \rightsquigarrow \alpha=\delta$
- quat. Heisenberg groups: $d \eta_{i}=\lambda\left(\Phi_{i}+\eta_{j} \wedge \eta_{k}\right) \rightsquigarrow 2 \alpha=\lambda, \delta=0$

We call the structure degenerate if $\delta=0$ and nondegenerate otherwise.
Theorem

- The structure is hypernormal (generalization of Kashiwada's thm, case $\alpha=\delta$).
- The distribution \mathcal{V} is integrable with totally geodesic leaves.
- Each ξ_{i} is a Killing vector field, and $\left[\xi_{i}, \xi_{j}\right]=2 \delta \xi_{k}$.

Definition

An \mathcal{H}-homothetic deformation of an almost 3-contact metric strucure ($\varphi_{i}, \xi_{i}, \eta_{i}, g$) is given by

$$
\eta_{i}^{\prime}=c \eta_{i}, \quad \xi_{i}^{\prime}=\frac{1}{c} \xi_{i}, \quad \varphi_{i}^{\prime}=\varphi_{i}, \quad g^{\prime}=a g+b \sum_{i=1}^{3} \eta_{i} \otimes \eta_{i},
$$

$a, b, c \in \mathbb{R}, a>0, c^{2}=a+b>0$.
If $\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ is 3 - (α, δ)-Sasaki, then $\left(\varphi_{i}^{\prime}, \xi_{i}^{\prime}, \eta_{i}^{\prime}, g^{\prime}\right)$ is 3 - $\left(\alpha^{\prime}, \delta^{\prime}\right)$-Sasaki with

$$
\alpha^{\prime}=\alpha \frac{c}{a}, \quad \delta^{\prime}=\frac{\delta}{c} .
$$

- the class of degenerate 3-($\alpha, \delta)$-Sasaki structures is preserved
- in the non-degenerate case, the sign of $\alpha \delta$ is preserved.

Definition

We say that a 3-($\alpha, \delta)$-Sasaki manifold is positive (resp. negative) if $\alpha \delta>0(r e s p ~ \alpha \delta<0)$.

Proposition

$\alpha \delta>0 \Longleftrightarrow M$ is \mathcal{H}-homothetic to a 3-Sasakian manifold ($\alpha=\delta=1$) $\alpha \delta<0 \Longleftrightarrow M$ is \mathcal{H}-homothetic to one with $\alpha=-1, \delta=1$.

Do there exist 3-($\alpha, \delta)$-Sasaki manifolds with $\alpha \delta<0$?

YES - here is the construction:

Definition

A negative 3-Sasakian manifold is a normal almost 3-contact manifold $\left(M^{4 n+3}, \varphi_{i}, \xi_{i}, \eta_{i}\right)$ endowed with a compatible semi-Riemannian metric \tilde{g} of has signature $(3,4 n)$ such that $d \eta_{i}(X, Y)=2 \tilde{g}\left(X, \varphi_{i} Y\right)$.

Proposition

If $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, \tilde{g}\right)$ is a negative 3-Sasakian manifold, take

$$
g=-\tilde{g}+2 \sum_{i=1}^{3} \eta_{i} \otimes \eta_{i} .
$$

Then $\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ is a $3-(\alpha, \delta)$-Sasaki structure with $\alpha=-1$ and $\delta=1$.
It is known that quaternionic Kähler (not hyperKähler) manifolds with negative scalar curvature admit a canonically associated principal $\mathrm{SO}(3)$-bundle $P(M)$ which is endowed with a negative 3-Sasakian structure (Konishi, 1975-Tanno, 1996).

φ-compatible connections

Definition

Let $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be an almost 3-contact metric manifold, (φ, ξ, η, g) a structure in the associated sphere Σ_{M}. Let ∇ be a metric connection with skew torsion on M. We say that ∇ is a φ-compatible connection if

1) ∇ preserves the splitting $T M=\mathcal{H} \oplus \mathcal{V}$,
2) $\left(\nabla_{X} \varphi\right) Y=0 \quad \forall X, Y \in \Gamma(\mathcal{H})$.

φ-compatible connections

Definition

Let $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be an almost 3-contact metric manifold, (φ, ξ, η, g) a structure in the associated sphere Σ_{M}. Let ∇ be a metric connection with skew torsion on M. We say that ∇ is a φ-compatible connection if

1) ∇ preserves the splitting $T M=\mathcal{H} \oplus \mathcal{V}$,
2) $\left(\nabla_{X} \varphi\right) Y=0 \quad \forall X, Y \in \Gamma(\mathcal{H})$.

Theorem

M admits a φ-compatible connection if and only if

1) N_{φ} is skew-symmetric on \mathcal{H};
2) $\left(\mathcal{L}_{\xi_{i}} g\right)(X, Y)=0$ for every $X, Y \in \Gamma(\mathcal{H})$ and $i=1,2,3$;
3) $\left(\mathcal{L}_{X} g\right)\left(\xi_{i}, \xi_{j}\right)=0$ for every $X \in \Gamma(\mathcal{H})$ and $i, j=1,2,3$.

Remark If each ξ_{i} is Killing, 2) and 3) hold.
! φ-compatible connections are not uniquely determined they are parametrized by their parameter function

$$
\gamma:=T\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in C^{\infty}(M)
$$

! φ-compatible connections are not uniquely determined they are parametrized by their parameter function

$$
\gamma:=T\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in C^{\infty}(M)
$$

$\nabla \varphi_{i} \equiv 0$ is too strong
φ-compatibility is too weak
$!\varphi$-compatible connections are not uniquely determined they are parametrized by their parameter function

$$
\gamma:=T\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in C^{\infty}(M)
$$

$$
\begin{gathered}
\nabla \varphi_{i} \equiv 0 \text { is too strong } \\
\varphi \text {-compatibility is too weak }
\end{gathered}
$$

\rightsquigarrow suppose ∇ preserves the 3-dimensional distribution in $\operatorname{End}(T M)$ spanned by φ_{i} as do quaternionic connections (qK case):

$$
\nabla_{X} \varphi_{i}=\beta\left(\eta_{k}(X) \varphi_{j}-\eta_{j}(X) \varphi_{k}\right) \quad \forall X \in \mathfrak{X}(M)
$$

for every (i, j, k) even permutation of $(1,2,3)$.

The canonical connection: general existence

Theorem
An almost 3-contact metric manifold ($M, \varphi_{i}, \xi_{i}, \eta_{i}, g$) admits a metric connection ∇ with skew torsion such that for some smooth function β,

$$
\nabla_{X} \varphi_{i}=\beta\left(\eta_{k}(X) \varphi_{j}-\eta_{j}(X) \varphi_{k}\right) \quad \forall X \in \mathfrak{X}(M)
$$

for every even permutation (i, j, k) of $(1,2,3)$, if and only if
1)
2)
3)
4)

The canonical connection: general existence

Theorem
An almost 3-contact metric manifold ($M, \varphi_{i}, \xi_{i}, \eta_{i}, g$) admits a metric connection ∇ with skew torsion such that for some smooth function β,

$$
\nabla_{X} \varphi_{i}=\beta\left(\eta_{k}(X) \varphi_{j}-\eta_{j}(X) \varphi_{k}\right) \quad \forall X \in \mathfrak{X}(M)
$$

for every even permutation (i, j, k) of $(1,2,3)$, if and only if

1) each ξ_{i} is a Killing vector field,
2)
3)
4)

The canonical connection: general existence

Theorem
An almost 3 -contact metric manifold ($M, \varphi_{i}, \xi_{i}, \eta_{i}, g$) admits a metric connection ∇ with skew torsion such that for some smooth function β,

$$
\nabla_{X} \varphi_{i}=\beta\left(\eta_{k}(X) \varphi_{j}-\eta_{j}(X) \varphi_{k}\right) \quad \forall X \in \mathfrak{X}(M)
$$

for every even permutation (i, j, k) of $(1,2,3)$, if and only if

1) each ξ_{i} is a Killing vector field,
2) each $N_{\varphi_{i}}$ is totally skew-symmetric on \mathcal{H},
3)
4)

The canonical connection: general existence

Theorem
An almost 3-contact metric manifold ($M, \varphi_{i}, \xi_{i}, \eta_{i}, g$) admits a metric connection ∇ with skew torsion such that for some smooth function β,

$$
\nabla_{X} \varphi_{i}=\beta\left(\eta_{k}(X) \varphi_{j}-\eta_{j}(X) \varphi_{k}\right) \quad \forall X \in \mathfrak{X}(M)
$$

for every even permutation (i, j, k) of $(1,2,3)$, if and only if

1) each ξ_{i} is a Killing vector field,
2) each $N_{\varphi_{i}}$ is totally skew-symmetric on \mathcal{H},
3) for any $X, Y, Z \in \Gamma(\mathcal{H})$ and any $i, j=1,2,3$,
$N_{\varphi_{i}}(X, Y, Z)-d \Phi_{i}\left(\varphi_{i} X, \varphi_{i} Y, \varphi_{i} Z\right)=N_{\varphi_{j}}(X, Y, Z)-d \Phi_{j}\left(\varphi_{j} X, \varphi_{j} Y, \varphi_{j} Z\right)$,
4)

The canonical connection: general existence

Theorem

An almost 3 -contact metric manifold ($M, \varphi_{i}, \xi_{i}, \eta_{i}, g$) admits a metric connection ∇ with skew torsion such that for some smooth function β,

$$
\nabla_{X} \varphi_{i}=\beta\left(\eta_{k}(X) \varphi_{j}-\eta_{j}(X) \varphi_{k}\right) \quad \forall X \in \mathfrak{X}(M)
$$

for every even permutation (i, j, k) of $(1,2,3)$, if and only if

1) each ξ_{i} is a Killing vector field,
2) each $N_{\varphi_{i}}$ is totally skew-symmetric on \mathcal{H},
3) for any $X, Y, Z \in \Gamma(\mathcal{H})$ and any $i, j=1,2,3$, $N_{\varphi_{i}}(X, Y, Z)-d \Phi_{i}\left(\varphi_{i} X, \varphi_{i} Y, \varphi_{i} Z\right)=N_{\varphi_{j}}(X, Y, Z)-d \Phi_{j}\left(\varphi_{j} X, \varphi_{j} Y, \varphi_{j} Z\right)$,
4) β is a Reeb Killing function, that is

$$
\begin{aligned}
& A_{i i}(X, Y)=0, \quad A_{i j}(X, Y)=-A_{j i}(X, Y)=\beta \Phi_{k}(X, Y) \\
& A_{i j}(X, Y):=g\left(\left(\mathcal{L}_{\xi_{j}} \varphi_{i}\right) X, Y\right)+d \eta_{j}\left(X, \varphi_{i} Y\right)+d \eta_{j}\left(\varphi_{i} X, Y\right) \\
& \text { for every } X, Y \in \Gamma(\mathcal{H}) \text { and even permutation }(i, j, k) \text { of }(1,2,3) .
\end{aligned}
$$

If such a connection ∇ exists, it is unique and φ-compatible for every almost contact metric structure φ in the associated sphere Σ_{M}.
∇ is called the canonical connection of M. It satisfies

$$
\begin{aligned}
\nabla_{X} \varphi_{i} & =\beta\left(\eta_{k}(X) \varphi_{j}-\eta_{j}(X) \varphi_{k}\right), \\
\nabla_{X} \xi_{i} & =\beta\left(\eta_{k}(X) \xi_{j}-\eta_{j}(X) \xi_{k}\right), \\
\nabla_{X} \eta_{i} & =\beta\left(\eta_{k}(X) \eta_{j}-\eta_{j}(X) \eta_{k}\right)
\end{aligned}
$$

If $\beta=0$, then $\nabla \varphi_{i}=\nabla \xi_{i}=\nabla \eta_{i}=0$.

Definition

We say that an almost 3 -contact metric manifold is canonical if it admits a (unique) canonical connection.
If $\beta=0\left(\Leftrightarrow A_{i j}=0 \forall i, j=1,2,3\right) M$ will be called parallel canonical.

The canonical connection ∇ satisfies

$$
\nabla \Psi=0, \quad \nabla \eta_{123}=0
$$

$\Psi:=\Phi_{1} \wedge \Phi_{1}+\Phi_{2} \wedge \Phi_{2}+\Phi_{3} \wedge \Phi_{3}$, fundamental 4-form. In particular

$$
\mathfrak{h o l}(\nabla) \subset(\mathfrak{s p}(n) \oplus \mathfrak{s p}(1)) \oplus \mathfrak{s o}(3) \subset \mathfrak{s o}(4 n) \oplus \mathfrak{s o}(3)
$$

For parallel canonical manifolds $(\beta=0): \mathfrak{h o l}(\nabla) \subset \mathfrak{s p}(n)$

The canonical connection ∇ satisfies

$$
\nabla \Psi=0, \quad \nabla \eta_{123}=0
$$

$\Psi:=\Phi_{1} \wedge \Phi_{1}+\Phi_{2} \wedge \Phi_{2}+\Phi_{3} \wedge \Phi_{3}$, fundamental 4-form. In particular

$$
\mathfrak{h o l}(\nabla) \subset(\mathfrak{s p}(n) \oplus \mathfrak{s p}(1)) \oplus \mathfrak{s o}(3) \subset \mathfrak{s o}(4 n) \oplus \mathfrak{s o}(3)
$$

For parallel canonical manifolds $(\beta=0): \mathfrak{h o l}(\nabla) \subset \mathfrak{s p}(n)$

Theorem

For a canonical manifold, each structure ($\varphi_{i}, \xi_{i}, \eta_{i}, g$) (and thus each $\varphi \in \Sigma_{M}$) admits a characteristic connection ∇^{i}, which is related to ∇ by

$$
\nabla=\nabla^{i}-\frac{\beta}{2}\left(\eta_{j} \wedge \Phi_{j}+\eta_{k} \wedge \Phi_{k}\right)
$$

(i, j, k) even permutation of $(1,2,3)$.
For $\beta=0: \nabla^{1}=\nabla^{2}=\nabla^{3}=\nabla$. [first known examples where this happens!]

Theorem

Every 3-($\alpha, \delta)$-Sasaki manifold is canonical with $\beta=2(\delta-2 \alpha)$.
It is parallel canonical iff $\delta=2 \alpha(\Rightarrow \alpha \delta>0)$.
The canonical connection of a 3-($\alpha, \delta)$-Sasaki manifold has torsion

$$
T=\sum_{i=1}^{3} \eta_{i} \wedge d \eta_{i}+8(\delta-\alpha) \eta_{123}
$$

and satisfies $\nabla T=0$.

- 3- α-Sasaki manifolds $(\alpha=\delta): T=\sum_{i} \eta_{i} \wedge d \eta_{i}$
- quat. Heisenberg groups $(\delta=0,2 \alpha=\lambda): T=\sum_{i} \eta_{i} \wedge d \eta_{i}-4 \lambda \eta_{123}$
canonical almost 3-contact metric manifolds
hypernormal canonical almost 3-contact metric m.

$$
3 \text { - }(\alpha, \delta) \text {-Sasaki manifolds } \quad \beta=2(\delta-2 \alpha)
$$

canonical almost 3-contact metric manifolds

The geometry of $3-(\alpha, \delta)$-Sasaki manifolds

Using the canonical connection ∇ and applying Agricola-Höll criterion:
Theorem
Let $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be a $3-(\alpha, \delta)$-Sasaki manifold. Then the metric cone

$$
(\bar{M}, \bar{g})=\left(M \times \mathbb{R}^{+}, a^{2} r^{2} g+d r^{2}\right), \quad a=-\frac{\beta}{2},
$$

is HKT manifold.

The geometry of $3-(\alpha, \delta)$-Sasaki manifolds

Using the canonical connection ∇ and applying Agricola-Höll criterion:
Theorem
Let $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be a 3 - (α, δ)-Sasaki manifold. Then the metric cone

$$
(\bar{M}, \bar{g})=\left(M \times \mathbb{R}^{+}, a^{2} r^{2} g+d r^{2}\right), \quad a=-\frac{\beta}{2},
$$

is HKT manifold.
Moreover, every 3-($\alpha, \delta)$-Sasakian manifold admits an underlying quaternionic contact structure, and the canonical connection turns out to be a quaternionic contact connection. In fact, it is qc-Einstein (Ivanov Minchev - Vassilev, 2016) and this allows to determine the Riemannian Ricci curvature:

Theorem

The Riemannian Ricci curvature of a 3-($\alpha, \delta)$-Sasaki manifold is

$$
\operatorname{Ric}^{g}=2 \alpha(2 \delta(n+2)-3 \alpha) g+2(\alpha-\delta)((2 n+3) \alpha-\delta) \sum_{i=1}^{3} \eta_{i} \otimes \eta_{i}
$$

The ∇-Ricci curvature is

$$
\operatorname{Ric}=4 \alpha\{\delta(n+2)-3 \alpha\} g+4 \alpha\{\delta(2-n)-5 \alpha\} \sum_{i=1}^{3} \eta_{i} \otimes \eta_{i} .
$$

The property of being symmetric follows for Ric from $\nabla T=0$.

Theorem

The Riemannian Ricci curvature of a 3-($\alpha, \delta)$-Sasaki manifold is

$$
\operatorname{Ric}^{g}=2 \alpha(2 \delta(n+2)-3 \alpha) g+2(\alpha-\delta)((2 n+3) \alpha-\delta) \sum_{i=1}^{3} \eta_{i} \otimes \eta_{i}
$$

The ∇-Ricci curvature is

$$
\operatorname{Ric}=4 \alpha\{\delta(n+2)-3 \alpha\} g+4 \alpha\{\delta(2-n)-5 \alpha\} \sum_{i=1}^{3} \eta_{i} \otimes \eta_{i} .
$$

The property of being symmetric follows for Ric from $\nabla T=0$.

- M is Riemannian Einstein iff $\alpha=\delta$ or $\delta=(2 n+3) \alpha$.
- The manifold is ∇-Einstein iff $\delta(2-n)=5 \alpha$.
- The manifold is both Riemannian Einstein and ∇-Einstein if and only if $\operatorname{dim} M=7$ and $\delta=5 \alpha$ (happens for example for 'compatible' nearly parallel G_{2}-str., see next).

7-dimensional 3-($\alpha, \delta)$-Sasaki manifolds

Theorem

Any 7-dimensional 3-($\alpha, \delta)$-Sasaki manifold admits a a cocalibrated G_{2}-structure (Fernandez-Gray type $W_{1} \oplus W_{3}$) given by the 3 -form

$$
\omega:=\sum_{i=1}^{3} \eta_{i} \wedge \Phi_{i}^{\mathcal{H}}+\eta_{123} .
$$

Its characteristic connection ∇ coincides with the canonical connection.
This G_{2}-structure defines a unique canonical spinor field ψ_{0} such that

$$
\nabla \psi_{0}=0, \quad \omega \cdot \psi_{0}=-7 \psi_{0}, \quad\left|\psi_{0}\right|=1
$$

Theorem

(1) The canonical spinor field ψ_{0} is a generalized Killing spinor:

$$
\nabla_{X}^{g} \psi_{0}=-\frac{3 \alpha}{2} X \cdot \psi_{0} \quad \text { for } X \in \mathcal{H}, \quad \nabla_{Y}^{g} \psi_{0}=\frac{2 \alpha-\delta}{2} Y \cdot \psi_{0} \quad \text { for } Y \in \mathcal{V} .
$$

The two generalized Killing numbers coincide iff $\delta=5 \alpha$, corresponding to a nearly parallel G_{2}-structure. (Gray-Fernandez type W_{1})
[$\delta=5 \alpha$ is the only case where M is Einstein and ∇-Einstein].
(1) The Clifford products $\psi_{i}:=\xi_{i} \cdot \psi_{0}, i=1,2,3$, are generalized Killing spinors:

$$
\begin{gathered}
\nabla_{\xi_{i}}^{g} \psi_{i}=\frac{2 \alpha-\delta}{2} \xi_{i} \cdot \psi_{i}, \quad \nabla_{\xi_{j}}^{g} \psi_{i}=-\frac{3 \delta-2 \alpha}{2} \xi_{j} \cdot \psi_{i}(i \neq j), \\
\nabla_{X}^{g} \psi_{i}=\frac{\alpha}{2} X \cdot \psi_{i} \quad \text { for } X \in \mathcal{H} .
\end{gathered}
$$

Any two of the generalized Killing numbers coincide iff $\alpha=\delta$, i. e. if M^{7} is 3 - α-Sasakian.

Homogeneous 3-Sasakian manifolds

Theorem (Boyer, Galicki, Mann, 1994)
Let $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be a homogeneous 3-Sasakian manifold. Then M is one of the following homogeneous spaces:

$$
\begin{array}{rllll}
\frac{\mathrm{Sp}(n+1)}{\mathrm{Sp}(n)}, & \frac{\mathrm{Sp}(n+1)}{\mathrm{Sp}(n) \times \mathbb{Z}_{2}}, & \frac{\mathrm{SU}(m+2)}{S(\mathrm{U}(m) \times \mathrm{U}(1))}, & \frac{\mathrm{SO}(k+4)}{\mathrm{SO}(k) \times \operatorname{Sp}(1)}, \\
\frac{\mathrm{G}_{2}}{\mathrm{Sp}(1)}, & \frac{\mathrm{F}_{4}}{\mathrm{Sp}(3)}, & \frac{\mathrm{E}_{6}}{\mathrm{SU}(6)}, & \frac{\mathrm{E}_{7}}{\operatorname{Spin}(12)}, & \frac{\mathrm{E}_{8}}{\mathrm{E}_{7}} .
\end{array}
$$

Here $n \geq 0, m \geq 1$ and $k \geq 3$.

- They are all simply connected except for $\mathbb{R} P^{4 n+3} \simeq \frac{\mathrm{Sp}(n+1)}{\mathrm{Sp}(n) \times \mathbb{Z}_{2}}$
- 1-1 correspondence between simply connected 3-Sasakian homogeneous manifolds and compact simple Lie algebras

Uniform description of homogeneous 3-Sasakian manifolds

(Draper, Ortega, Palomo, 2018)
Definition
A 3-Sasakian data is a triple $\left(G, G_{0}, H\right)$ of Lie groups such that

- G is a compact, simple Lie Group
- $H \subset G_{0} \subset G$ connected Lie subgroups

Uniform description of homogeneous 3-Sasakian manifolds

(Draper, Ortega, Palomo, 2018)
Definition
A 3-Sasakian data is a triple $\left(G, G_{0}, H\right)$ of Lie groups such that

- G is a compact, simple Lie Group
- $H \subset G_{0} \subset G$ connected Lie subgroups and the Lie algebras $\mathfrak{h} \subset \mathfrak{g}_{0} \subset \mathfrak{g}$ satisfy:
- $\mathfrak{g}_{0}=\mathfrak{h} \oplus \mathfrak{s p}(1)$ with $\mathfrak{s p}(1)$ and \mathfrak{h} commuting subalgebras,

Uniform description of homogeneous 3-Sasakian manifolds

(Draper, Ortega, Palomo, 2018)
Definition
A 3-Sasakian data is a triple $\left(G, G_{0}, H\right)$ of Lie groups such that

- G is a compact, simple Lie Group
- $H \subset G_{0} \subset G$ connected Lie subgroups and the Lie algebras $\mathfrak{h} \subset \mathfrak{g}_{0} \subset \mathfrak{g}$ satisfy:
- $\mathfrak{g}_{0}=\mathfrak{h} \oplus \mathfrak{s p}(1)$ with $\mathfrak{s p}(1)$ and \mathfrak{h} commuting subalgebras,
- ($\mathfrak{g}, \mathfrak{g}_{0}$) form a symmetric pair, $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$,

Uniform description of homogeneous 3-Sasakian manifolds

(Draper, Ortega, Palomo, 2018)

Definition

A 3-Sasakian data is a triple $\left(G, G_{0}, H\right)$ of Lie groups such that

- G is a compact, simple Lie Group
- $H \subset G_{0} \subset G$ connected Lie subgroups and the Lie algebras $\mathfrak{h} \subset \mathfrak{g}_{0} \subset \mathfrak{g}$ satisfy:
- $\mathfrak{g}_{0}=\mathfrak{h} \oplus \mathfrak{s p}(1)$ with $\mathfrak{s p}(1)$ and \mathfrak{h} commuting subalgebras,
- ($\mathfrak{g}, \mathfrak{g}_{0}$) form a symmetric pair, $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$,
- the complexification $\mathfrak{g}_{1}^{\mathbb{C}}=\mathbb{C}^{2} \otimes_{\mathbb{C}} W$ for some $\mathfrak{h}^{\mathbb{C}}$-module of $\operatorname{dim}_{\mathbb{C}} W=2 n$,

Uniform description of homogeneous 3-Sasakian manifolds

 (Draper, Ortega, Palomo, 2018)
Definition

A 3-Sasakian data is a triple $\left(G, G_{0}, H\right)$ of Lie groups such that

- G is a compact, simple Lie Group
- $H \subset G_{0} \subset G$ connected Lie subgroups and the Lie algebras $\mathfrak{h} \subset \mathfrak{g}_{0} \subset \mathfrak{g}$ satisfy:
- $\mathfrak{g}_{0}=\mathfrak{h} \oplus \mathfrak{s p}(1)$ with $\mathfrak{s p}(1)$ and \mathfrak{h} commuting subalgebras,
- ($\left.\mathfrak{g}, \mathfrak{g}_{0}\right)$ form a symmetric pair, $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$,
- the complexification $\mathfrak{g}_{1}^{\mathbb{C}}=\mathbb{C}^{2} \otimes_{\mathbb{C}} W$ for some $\mathfrak{h}^{\mathbb{C}}$-module of $\operatorname{dim}_{\mathbb{C}} W=2 n$,
- $\mathfrak{h}^{\mathbb{C}}, \mathfrak{s p}(1)^{\mathbb{C}} \subset \mathfrak{g}_{0}^{\mathbb{C}}$ act on $\mathfrak{g}_{1}^{\mathbb{C}}$ by their action on W and \mathbb{C}^{2}.

Uniform description of homogeneous 3-Sasakian manifolds

 (Draper, Ortega, Palomo, 2018)
Definition

A 3-Sasakian data is a triple $\left(G, G_{0}, H\right)$ of Lie groups such that

- G is a compact, simple Lie Group
- $H \subset G_{0} \subset G$ connected Lie subgroups and the Lie algebras $\mathfrak{h} \subset \mathfrak{g}_{0} \subset \mathfrak{g}$ satisfy:
- $\mathfrak{g}_{0}=\mathfrak{h} \oplus \mathfrak{s p}(1)$ with $\mathfrak{s p}(1)$ and \mathfrak{h} commuting subalgebras,
- ($\mathfrak{g}, \mathfrak{g}_{0}$) form a symmetric pair, $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$,
- the complexification $\mathfrak{g}_{1}^{\mathbb{C}}=\mathbb{C}^{2} \otimes_{\mathbb{C}} W$ for some $\mathfrak{h}^{\mathbb{C}}$-module of $\operatorname{dim}_{\mathbb{C}} W=2 n$,
- $\mathfrak{h}^{\mathbb{C}}, \mathfrak{s p}(1)^{\mathbb{C}} \subset \mathfrak{g}_{0}^{\mathbb{C}}$ act on $\mathfrak{g}_{1}^{\mathbb{C}}$ by their action on W and \mathbb{C}^{2}.

Remark In total the Lie algebra decomposes as
$\mathfrak{g}=\overbrace{\mathfrak{h} \oplus \underbrace{\mathfrak{s p p}(1)}_{\mathfrak{m}} \oplus \mathfrak{g}_{1}}^{\mathfrak{g}_{0}}$
(\mathfrak{m} is a reductive complement for $M=G / H$)

Homogeneous 3-Sasakian model

Theorem (Draper, Ortega, Palomo, 2018)

Let $\left(G, G_{0}, H\right)$ be 3 -Sasakian data. On $M=G / H$ consider the
G-invariant structure defined by the $\operatorname{Ad}(H)$-invariant tensors on \mathfrak{m} :

- the inner product g

$$
\left.g\right|_{\mathfrak{s p}(1)}=\frac{-\kappa}{4(n+2)},\left.\quad g\right|_{\mathfrak{g}_{1}}=\frac{-\kappa}{8(n+2)},\left.\quad g\right|_{\mathfrak{s p}(1) \times \mathfrak{g}_{1}}=0
$$

κ the Killing form on G.

- $\xi_{i}=\sigma_{i}, i=1,2,3, \sigma_{i}$ standard basis of $\mathfrak{s p}(1)=\mathcal{V} \subset \mathfrak{g}_{0}, \eta_{i}=g\left(\xi_{i}, \cdot\right)$
- the endomorphisms φ_{i} as

$$
\left.\varphi_{i}\right|_{\mathfrak{s p}(1)}=\frac{1}{2} \operatorname{ad}\left(\xi_{i}\right),\left.\quad \varphi_{i}\right|_{\mathfrak{g}_{1}}=\operatorname{ad}\left(\xi_{i}\right) .
$$

Then $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ defines a homogeneous 3-Sasakian manifold. Conversely every homogeneous 3-Sasakian manifold $M \neq \mathbb{R} P^{4 n+3}$ is obtained by this construction.

Remark: M fibers over the quaternion Kähler symmetric space G / G_{0}.

Homogeneous positive 3- (α, δ)-Sasakian model

Idea: Use \mathcal{H}-homothetic deformation to obtain 3-($\alpha, \delta)$-Sasakian mnfds for $\alpha \delta>0$

Homogeneous positive 3- (α, δ)-Sasakian model

Idea: Use \mathcal{H}-homothetic deformation to obtain 3- (α, δ)-Sasakian mnfds for $\alpha \delta>0$

Theorem

Let $\left(G, G_{0}, H\right)$ be 3-Sasakian data, $\alpha \delta>0$. On $M=G / H$ consider the G-invariant structure by the $\operatorname{Ad}(H)$-invariant tensors on \mathfrak{m} :

$$
\begin{gathered}
\left.g\right|_{\mathfrak{s p}(1)}=\frac{-\kappa}{4 \delta^{2}(n+2)},\left.\quad g\right|_{\mathfrak{g}_{1}}=\frac{-\kappa}{8 \alpha \delta(n+2)},\left.\quad g\right|_{\mathfrak{s p}(1) \times \mathfrak{g}_{1}}=0 \\
\xi_{i}=\delta \sigma_{i}, \quad \eta_{i}=g\left(\xi_{i}, \cdot\right) \\
\left.\varphi_{i}\right|_{\mathfrak{s p}(1)}=\frac{1}{2 \delta} \operatorname{ad}\left(\xi_{i}\right),\left.\quad \varphi_{i}\right|_{\mathfrak{g}_{1}}=\frac{1}{\delta} \operatorname{ad}\left(\xi_{i}\right) .
\end{gathered}
$$

Then $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ defines a homogeneous 3-($\left.\alpha, \delta\right)$-Sasakian mnfd. Conversely every homogeneous 3 - (α, δ)-Sasakian manifold $M \neq \mathbb{R} P^{4 n+3}$ with $\alpha \delta>0$ is obtained by this construction.

Remark: $(G / H, g)$ is naturally reductive $\Leftrightarrow \delta=2 \alpha \Leftrightarrow$ parallel $3-(\alpha, \delta)$.

Generalized setup

Definition

A generalized 3-Sasakian data is a triple $\left(G, G_{0}, H\right)$ of Lie groups such that

- G is a real simple Lie Group
- $H \subset G_{0} \subset G$ connected Lie subgroups
and the Lie algebras $\mathfrak{h} \subset \mathfrak{g}_{0} \subset \mathfrak{g}$ satisfy:
- $\mathfrak{g}_{0}=\mathfrak{h} \oplus \mathfrak{s p}(1)$ with $\mathfrak{s p}(1)$ and \mathfrak{h} commuting subalgebras,
- ($\mathfrak{g}, \mathfrak{g}_{0}$) form a symmetric pair, $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$,
- the complexification $\mathfrak{g}_{1}^{\mathbb{C}}=\mathbb{C}^{2} \otimes_{\mathbb{C}} W$ for some $\mathfrak{h}^{\mathbb{C}}$-module of $\operatorname{dim}_{\mathbb{C}} W=2 n$,
- $\mathfrak{h}^{\mathbb{C}}, \mathfrak{s p}(1)^{\mathbb{C}} \subset \mathfrak{g}_{0}^{\mathbb{C}}$ act on $\mathfrak{g}_{1}^{\mathbb{C}}$ by their action on W and \mathbb{C}^{2}.

Generalized setup

Definition

A generalized 3-Sasakian data is a triple $\left(G, G_{0}, H\right)$ of Lie groups such that

- G is a real simple Lie Group
- $H \subset G_{0} \subset G$ connected Lie subgroups
and the Lie algebras $\mathfrak{h} \subset \mathfrak{g}_{0} \subset \mathfrak{g}$ satisfy:
- $\mathfrak{g}_{0}=\mathfrak{h} \oplus \mathfrak{s p}(1)$ with $\mathfrak{s p}(1)$ and \mathfrak{h} commuting subalgebras,
- ($\mathfrak{g}, \mathfrak{g}_{0}$) form a symmetric pair, $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$,
- the complexification $\mathfrak{g}_{1}^{\mathbb{C}}=\mathbb{C}^{2} \otimes_{\mathbb{C}} W$ for some $\mathfrak{h}^{\mathbb{C}}$-module of $\operatorname{dim}_{\mathbb{C}} W=2 n$,
- $\mathfrak{h}^{\mathbb{C}}, \mathfrak{s p}(1)^{\mathbb{C}} \subset \mathfrak{g}_{0}^{\mathbb{C}}$ act on $\mathfrak{g}_{1}^{\mathbb{C}}$ by their action on W and \mathbb{C}^{2}.

If $\left(\mathfrak{g}, \mathfrak{g}_{0}\right)$ is a compact symmetric pair such that $\left(G, G_{0}, H\right)$ is 3-Sasakian data, then $\left(G^{*}, G_{0}, H\right)$ is generalized 3 -Sasakian data, where $\left(\mathfrak{g}^{*}, \mathfrak{g}_{0}\right)$ is the dual non-compact symmetric pair.

Negative homogeneous 3- (α, δ)-Sasakian manifolds

Theorem

Let $\left(G^{*}, G_{0}, H\right)$ be non-compact generalized 3-Sasakian data, $\alpha \delta<0$.
On $M=G^{*} / H$ consider the G^{*}-invariant structure defined by the $\operatorname{Ad}(H)$-invariant tensors on \mathfrak{m}

$$
\begin{gathered}
\left.g\right|_{\mathfrak{s p p}(1)}=\frac{-\kappa}{4 \delta^{2}(n+2)},\left.\quad g\right|_{\mathfrak{g}_{1}}=\frac{-\kappa}{8 \alpha \delta(n+2)},\left.\quad g\right|_{\mathfrak{s p}(1) \times \mathfrak{g}_{1}}=0, \\
\xi_{i}=\delta \sigma_{i}, \quad \eta_{i}=g\left(\xi_{i}, \cdot\right), \\
\left.\varphi_{i}\right|_{\mathfrak{s p}(1)}=\frac{1}{2 \delta} \operatorname{ad}\left(\xi_{i}\right),\left.\quad \varphi_{i}\right|_{\mathfrak{g}_{1}}=\frac{1}{\delta} \operatorname{ad}\left(\xi_{i}\right),
\end{gathered}
$$

κ the Killing form on G^{*}, σ_{i} standard basis $\mathfrak{s p}(1)=\mathcal{V} \subset \mathfrak{g}_{0}$.
Then ($M, g, \xi_{i}, \eta_{i}, \varphi_{i}$) defines a homogeneous 3-($\left.\alpha, \delta\right)$-Sasakian manifold.
Question: Does this model cover all homogenous negative 3-($\alpha, \delta)$-Sasaki manifolds?

In total we obtain homogeneous 3- (α, δ)-Sasakian structures on the following list of homogeneous spaces (G / H compact, G^{*} / H non-compact):

G	G^{*}	H	G_{0}	dim
$\operatorname{Sp}(n+1)$	$\operatorname{Sp}(n, 1)$	$\operatorname{Sp}(n)$	$\operatorname{Sp}(n) \operatorname{Sp}(1)$	$4 n+3$
$\mathrm{SU}(n+2)$	$\mathrm{SU}(n, 2)$	$S(\mathrm{U}(n) \times \mathrm{U}(1))$	$S(\mathrm{U}(n) \mathrm{U}(2))$	$4 n+3$
$\mathrm{SO}(n+4)$	$\mathrm{SO}(n, 4)$	$\mathrm{SO}(n) \times \operatorname{Sp}(1)$	$\mathrm{SO}(n) \operatorname{SO}(4)$	$4 n+3$
G_{2}	G_{2}^{2}	$\mathrm{Sp}(1)$	$\mathrm{SO}(4)$	11
$\mathrm{~F}_{4}$	$\mathrm{~F}_{4}^{-20}$	$\mathrm{Sp}(3)$	$\mathrm{Sp}(3) \operatorname{Sp}(1)$	31
E_{6}	E_{6}^{2}	$\mathrm{SU}(6)$	$\mathrm{SU}(6) \operatorname{Sp}(1)$	43
E_{7}	E_{7}^{-5}	$\operatorname{Spin}(12)$	$\operatorname{Spin}(12) \operatorname{Sp}(1)$	67
E_{8}	E_{8}^{-24}	E_{7}	$\mathrm{E}_{7} \operatorname{Sp}(1)$	115

Remark: $\mathbb{R} P^{4 n+3}=\frac{\mathrm{Sp}(n+1)}{\mathrm{Sp}(n) \times \mathbb{Z}_{2}}$ and non compact dual $\frac{\mathrm{Sp}(n, 1)}{\mathrm{Sp}(n) \times \mathbb{Z}_{2}}$ also admit 3-($\alpha, \delta)$-Sasaki structures, as the quotient of $S^{4 n+3}=\frac{\mathrm{Sp}(n+1)}{\mathrm{Sp}(n)}$, resp. $\frac{\mathrm{Sp}(n, 1)}{\mathrm{Sp}(n)}$ by \mathbb{Z}_{2} inside the fiber.

Definiteness of curvature operators

Consider the Riemannian curvature as a symmetric operator

$$
\mathcal{R}^{g}: \Lambda^{2} M \rightarrow \Lambda^{2} M \quad\left\langle\mathcal{R}^{g}(X \wedge Y), Z \wedge V\right\rangle=-g\left(R^{g}(X, Y) Z, V\right) .
$$

Definition

A Riemannian manifold (M, g) is said to have strongly positive curvature if there exists a 4 -form ω such that $\mathcal{R}^{g}+\omega$ is positive-definite at every point $x \in M$ (Thorpe, 1971).

For every 2 -plane σ, being $\langle\omega(\sigma), \sigma\rangle=0$, one has

$$
\sec (\sigma)=\left\langle\mathcal{R}^{g}(\sigma), \sigma\right\rangle=\left\langle\left(\mathcal{R}^{g}+\omega\right)(\sigma), \sigma\right\rangle .
$$

Then,
$\mathcal{R}^{g}>0 \Longrightarrow$ strongly positive curvature \Longrightarrow positive sectional curvature
$\mathcal{R}^{g} \geq 0 \Longrightarrow$ strongly non-negative curvature \Longrightarrow non-negative sec. curv.

On a 3-($\alpha, \delta)$-Sasakian manifold the symmetric operators defined by the Riemannian curvature and the curvature of the canonical connection:

$$
\mathcal{R}^{g}: \Lambda^{2} M \rightarrow \Lambda^{2} M \quad \mathcal{R}: \Lambda^{2} M \rightarrow \Lambda^{2} M
$$

are related by

$$
\mathcal{R}^{g}-\frac{1}{4} \sigma_{T}=\mathcal{R}+\frac{1}{4} \mathcal{G}_{T}
$$

with

$$
\begin{aligned}
& \left\langle\mathcal{G}_{T}(X \wedge Y), Z \wedge V\right\rangle:=g(T(X, Y), T(Z, V)) \\
& \left\langle\sigma_{T}(X \wedge Y), Z \wedge V\right\rangle:=\frac{1}{2} d T(X, Y, Z, V)
\end{aligned}
$$

(M, g) is strongly non-negative with 4-form $-\frac{1}{4} \sigma_{T}$ if and only if

$$
\mathcal{R}+\frac{1}{4} \mathcal{G}_{T} \geq 0
$$

Being $\mathcal{G}_{T} \geq 0$, if $\mathcal{R} \geq 0$ we directly have strong non-negativity.

Theorem

Let M be a homogeneous 3-($\alpha, \delta)$-Sasakian manifold obtained from a generalized 3-Sasakian data.

- If $\alpha \delta<0$ then $\mathcal{R} \leq 0$.
- If $\alpha \delta>0$ then

$$
\mathcal{R} \geq 0 \text { if and only if } \alpha \beta \geq 0
$$

Then, on a positive homogeneous 3 - (α, δ)-Sasaki manifold with $\alpha \beta \geq 0$:

$$
\mathcal{R}^{g}-\frac{1}{4} \sigma_{T}=\mathcal{R}+\frac{1}{4} \mathcal{G}_{T} \geq 0 .
$$

The converse also holds, i.e.
Theorem
A positive homogeneous 3-($\alpha, \delta)$-Sasaki manifold is strongly non-negative with 4 -form $-\frac{1}{4} \sigma_{T}$ if and only if $\alpha \beta \geq 0$.

Strong positivity is much more restrictive than strong non-negativity.
Strong positivity implies strict positive sectional curvature.
Homogeneous manifolds with strictly positive sectional curvature have been classified (Wallach 1972, Bérard Bergery 1976).
Only the 7 -dimensional Aloff-Wallach-space $W^{1,1}$, the spheres $S^{4 n+3}$ and real projective spaces $\mathbb{R} P^{4 n+3}$ admit homogeneous 3 - (α, δ)-Sasaki structures.

Theorem

The 3-($\alpha, \delta)$-Sasakian spaces

- $W^{1,1}=\operatorname{SU}(3) / S^{1}$ with 4 -form $-\left(\frac{1}{4}+\varepsilon\right) \sigma_{T}$ for small $\varepsilon>0$,
- $S^{4 n+3}, \mathbb{R} P^{4 n+3}, n \geq 1$, with 4 -form $\left.\frac{\delta}{8 \alpha} \sigma_{T}\right|_{\Lambda^{4} \mathcal{H}}-\left(\frac{1}{4}+\varepsilon\right) \sigma_{T}$ for small $\varepsilon>0$
are strongly positive if and only if $\alpha \beta>0$.

Short bibliography

I. Agricola, The Srní lectures on non-integrable geometries with torsion, Arch. Math.(Brno) 42 (2006), suppl., 5-84.
I. Agricola, G. Dileo, Generalizations of 3-Sasakian manifolds and skew torsion, Adv. Geom. (2019).
I. Agricola, G. Dileo, L. Stecker, Curvature and homogeneity properties of non-degenerate 3-(α, δ)- Sasaki manifolds, in preparation.
I. Agricola, T. Friedrich, 3-Sasakian manifolds in dimension seven, their spinors and G_{2}-structures, J. Geom. Phys. (2010).
I. Agricola, J. Höll, Cones of G manifolds and Killing spinors with skew torsion, Ann. Mat. Pura Appl. (2015).
C.P. Boyer, K. Galicki, B. M. Mann, The geometry and topology of 3-Sasakian manifolds J. Reine Angew. Math. (1994).
C. Draper, M. Ortega, F.J. Palomo, Affine Connections on 3-Sasakian Homogeneous Manifolds, Math. Z. (2019).
T. Friedrich, S. Ivanov, Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math. (2002).
S. Ivanov, I. Minchev, D. Vassilev, Quaternionic contact Einstein structures and the quaternionic contact Yamabe problem, Mem. AMS (2014).
T. Kashiwada, On a contact 3-structure, Math. Z. (2001).

