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Context: Geometry of almost 3-contact metric manifolds

Goals & Motivation

Define and investigate new classes of such manifolds:

• the Levi-Civita connection is not well-adapted to the structure

• look for ‘good’ metric connections with skew torsion

In particular,

• introduce notion of ϕ-compatible connections,

• make them unique by a certain extra condition → canonical
connection,

• define the new class of canonical almost 3-contact metric manifolds

• define and study 3-(α, δ)-Sasaki manifolds

• compute torsion, holonomy, curvature of the canonical connection,

• provide lots of examples, classify the homogeneous ones, further
applications (metric cone, existence of generalized Killing spinors. . . )



Almost contact metric structures

(M2n+1, ϕ, ξ, η, g) almost contact metric manifold if

- ξ is a vector field ξ, called the Reeb vector field,

- η = g(ξ, ·),

- ϕ is a (1,1)-tensor field such that ϕξ = 0 and

ϕ2 = − I, g(ϕX,ϕY ) = g(X,Y ) on 〈ξ〉⊥ = ker η.

Equivalently, the structural group is reducible to U(n)× {1}.

Then,

the fundamental 2-form is defined by

Φ(X,Y ) = g(X,ϕY ),

it is called normal if Nϕ := [ϕ,ϕ] + dη ⊗ ξ ≡ 0,

α-Sasakian, α ∈ R∗, if dη = 2αΦ, Nϕ ≡ 0 (⇒ ξ Killing)

Sasakian if 1-Sasakian.
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A metric connection ∇ on (M, g) has totally skew-symmetric torsion
(skew torsion for brief) if the (0, 3)-tensor field

T (X,Y, Z) := g(∇XY −∇YX − [X,Y ], Z)

is a 3-form (⇔ same geodesics as ∇g)

⇒ g(∇XY,Z) = g(∇gXY,Z) + 1
2 T (X,Y, Z)

Given a G-structure (G ⊂ SO(n)) on (M, g), if there exists a unique ∇
with skew torsion preserving the structure, ∇ is called characteristic
connection.

Theorem (Friedrich-Ivanov, 2002)

An almost contact metric manifold (M,ϕ, ξ, η, g) admits a unique metric
connection ∇ with totally skew symmetric torsion, and such that
∇η = ∇ξ = ∇ϕ = 0, if and only if

1. the tensor Nϕ := [ϕ,ϕ] + dη ⊗ ξ is totally skew-symmetric,

2. ξ is a Killing vector field.

In particular, it exists for α-Sasaki manifolds and its torsion T = η ∧ dη is
parallel.
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Almost 3-contact metric manifolds
(M4n+3, ϕi, ξi, ηi, g), i = 1, 2, 3 is almost 3-contact metric manifold if

each structure (ϕi, ξi, ηi, g) is almost contact metric

on the vertical distribution V := 〈ξ1, ξ2, ξ3〉:

ϕiξj = ξk = −ϕjξi (⇒ ξ1, ξ2, ξ3 are orthogonal)

on the horizontal distribution H := V⊥ =
⋂3
i=1 ker ηi:

ϕiϕj = ϕk = −ϕjϕi

for every even permutation (i, j, k) of (1, 2, 3).

Then,

structure group reducible to Sp(n)× {13}
M is said to be hypernormal if Nϕi

≡ 0, i = 1, 2, 3.

3-α-Sasakian if each structure is α-Sasakian

3-Sasakian if each structure is Sasakian ⇒ Einstein!

Theorem (Kashiwada, 2001)

If dηi = 2Φi, i = 1, 2, 3, then M is hypernormal (and thus 3-Sasakian).
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The associated sphere of structures

An almost 3-contact metric manifold (M,ϕi, ξi, ηi, g) carries a sphere
ΣM ∼= S2 of almost contact metric structures.

For every a = (a1, a2, a3) ∈ R3 such that a2
1 + a2

2 + a2
3 = 1, put

ϕa =

3∑
i=1

aiϕi, ξa =

3∑
i=1

aiξi, ηa =

3∑
i=1

aiηi.

Then (ϕa, ξa, ηa, g) is an almost contact metric structure.

Theorem (Cappelletti Montano - De Nicola - Yudin, 2016)

If Nϕi = 0 for all i = 1, 2, 3, then Nϕ = 0 for all ϕ ∈ ΣM .

Theorem

If each Nϕi
is skew symmetric on H (respectively on TM), then for all

ϕ ∈ ΣM , Nϕ is skew symmetric on H (respectively on TM).



Proposition

Let (M,ϕi, ξi, ηi, g) be a almost 3-contact metric manifold. If each
(ϕi, ξi, ηi, g), i = 1, 2, 3 admits a characteristic connection, the same
holds for every structure in the sphere.

Do these connections coincide?

Is it possible to find a metric connection with skew torsion
parallelizing ALL the structure tensor fields?

! For a 3-Sasakian manifold the characteristic connection of the
structure (ϕi, ξi, ηi, g) is

∇i = ∇g +
1

2
Ti, Ti = ηi ∧ dηi.

For i 6= j, Ti 6= Tj and thus ∇i 6= ∇j .

We need to relax the requirement that the structure should be parallel
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Canonical connection for 7-dimensional 3-Sasaki manifolds
(Agricola-Friedrich, 2010)

Let (M,ϕi, ξi, ηi, g) be a 7-dimensional 3-Sasakian manifold.

The 3-form

ω :=
1

2

∑
i

ηi ∧ dηi + 4 η123 η123 := η1 ∧ η2 ∧ η3

defines a cocalibrated G2-structure and hence admits a characteristic
connection ∇; its torsion is

T =

3∑
i=1

ηi ∧ dηi

∇ is called the canonical connection, and verifies the following:

it preserves H and V,

∇T = 0,

∇ admits a parallel spinor ψ, called canonical spinor, such that the
Clifford products ξi · ψ are exactly the 3 Riemannian Killing spinors.



Canonical connection for quaternionic Heisenberg groups

Np connected, simply connected 2-step nilpotent Lie group with Lie
algebra

np = span(ξ1, ξ2, ξ3, τr, τp+r, τ2p+r, τ3p+r), r = 1, . . . , p,

and non-vanishing commutators (λ > 0):

[τr, τp+r] = λξ1 [τr, τ2p+r] = λξ2 [τr, τ3p+r] = λξ3

[τ2p+r, τ3p+r] = λξ1 [τ3p+r, τp+r] = λξ2 [τp+r, τ2p+r] = λξ3.

Np admits an almost 3-contact metric structure (ϕi, ξi, ηi, gλ):

ηi dual 1-form of ξi

gλ Riemannian metric such that {ξi, τl} is orthonormal

ϕi = ηj ⊗ ξk − ηk ⊗ ξj +

p∑
r=1

[θr ⊗ τip+r − θip+r ⊗ τr

+θjp+r ⊗ τkp+r − θkp+r ⊗ τjp+r]

(θl, l = 1, . . . , 4p, dual 1− form of τl)

The structure is hypernormal with dΦi 6= 0.



The canonical connection (Agricola-Ferreira-Storm, 2015) is the metric
connection ∇ with skew torsion

T =

3∑
i=1

ηi ∧ dηi −4λ η123

It satisfies:

∇T = ∇R = 0  naturally reductive homogeneous space,

hol(∇) ' su(2), acting irreducibly on V and H.

In the 7-dimensional case, ∇ is the characteristic connection of the
cocalibrated G2 structure

ω = −η1 ∧ (θ12 + θ34)− η2 ∧ (θ13 + θ42)− η3 ∧ (θ14 + θ23) + η123.

Then, it admits a parallel spinor field ψ and the spinor fields ψi := ξi · ψ,
i = 1, 2, 3, are generalised Killing spinors:

∇gξiψi =
λ

2
ξi ·ψi, ∇gξjψi = −

λ

2
ξj ·ψi (i 6= j), ∇gXψi =

5λ

4
X ·ψi, X ∈ H
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Given an almost 3-contact metric manifold (M,ϕi, ξi, ηi, g), on the
metric cone

(M̄, ḡ) = (M × R+, a2r2g + dr2), a > 0,

one can define an almost hyperHermitian structure (ḡ, J1, J2, J3).

Well-known:

• the metric cone of a 3-Sasakian manifold is hyper-Kähler

• the metric cone of the quaternionic Heisenberg group is a
hyper-Kähler manifold with torsion (‘HKT manifold’)

Agricola-Höll, 2015: Criterion when the metric cone (for suitable a > 0)
is a HKT manifold (but unclear what a ‘good’ large class of manifolds

satisfying the criterion could be)

Is it possible to find a larger class of
almost 3-contact metric manifolds

with similar properties?
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3-(α, δ)-Sasaki manifolds

Definition

A 3-(α, δ)-Sasaki manifold is an almost 3-contact metric manifold
(M,ϕi, ξi, ηi, g) such that

dηi = 2αΦi + 2(α− δ)ηj ∧ ηk,

α ∈ R∗, δ ∈ R, (i, j, k) even permutation of (1, 2, 3).

3-α-Sasakian manifolds: dηi = 2αΦi  α = δ

quat. Heisenberg groups: dηi = λ(Φi + ηj ∧ ηk)  2α = λ, δ = 0

We call the structure degenerate if δ = 0 and nondegenerate otherwise.

Theorem

The structure is hypernormal (generalization of Kashiwada’s thm,
case α = δ).

The distribution V is integrable with totally geodesic leaves.

Each ξi is a Killing vector field, and [ξi, ξj ] = 2δξk.
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Definition
An H-homothetic deformation of an almost 3-contact metric strucure
(ϕi, ξi, ηi, g) is given by

η′i = cηi, ξ′i =
1

c
ξi, ϕ′i = ϕi, g′ = ag + b

3∑
i=1

ηi ⊗ ηi,

a, b, c ∈ R, a > 0, c2 = a+ b > 0.

If (ϕi, ξi, ηi, g) is 3-(α, δ)-Sasaki, then (ϕ′i, ξ
′
i, η
′
i, g
′) is 3-(α′, δ′)-Sasaki

with
α′ = α

c

a
, δ′ =

δ

c
.

the class of degenerate 3-(α, δ)-Sasaki structures is preserved
in the non-degenerate case, the sign of αδ is preserved.

Definition

We say that a 3-(α, δ)-Sasaki manifold is positive (resp. negative) if
αδ > 0 (resp αδ < 0).

Proposition

αδ > 0⇐⇒ M is H-homothetic to a 3-Sasakian manifold (α = δ = 1)
αδ < 0⇐⇒ M is H-homothetic to one with α = −1, δ = 1.

Proposition

A 3-(α, δ)-Sasaki manifold is H-homothetic to a 3-Sasakian manifold if
and only if αδ > 0.



Do there exist 3-(α, δ)-Sasaki manifolds with αδ < 0?

YES - here is the construction:

Definition
A negative 3-Sasakian manifold is a normal almost 3-contact manifold
(M4n+3, ϕi, ξi, ηi) endowed with a compatible semi-Riemannian metric g̃
of has signature (3, 4n) such that dηi(X,Y ) = 2g̃(X,ϕiY ).

Proposition

If (M,ϕi, ξi, ηi, g̃) is a negative 3-Sasakian manifold, take

g = −g̃ + 2

3∑
i=1

ηi ⊗ ηi.

Then (ϕi, ξi, ηi, g) is a 3-(α, δ)-Sasaki structure with α = −1 and δ = 1.

It is known that quaternionic Kähler (not hyperKähler) manifolds with
negative scalar curvature admit a canonically associated principal
SO(3)-bundle P (M) which is endowed with a negative 3-Sasakian
structure (Konishi, 1975 - Tanno, 1996).



ϕ-compatible connections

Definition

Let (M,ϕi, ξi, ηi, g) be an almost 3-contact metric manifold, (ϕ, ξ, η, g)
a structure in the associated sphere ΣM . Let ∇ be a metric connection
with skew torsion on M . We say that ∇ is a ϕ-compatible connection if

1) ∇ preserves the splitting TM = H⊕ V,

2) (∇Xϕ)Y = 0 ∀X,Y ∈ Γ(H).

Theorem
M admits a ϕ-compatible connection if and only if

1) Nϕ is skew-symmetric on H;

2) (Lξig)(X,Y ) = 0 for every X,Y ∈ Γ(H) and i = 1, 2, 3;

3) (LXg)(ξi, ξj) = 0 for every X ∈ Γ(H) and i, j = 1, 2, 3.

Remark If each ξi is Killing, 2) and 3) hold.
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! ϕ-compatible connections are not uniquely determined

they are parametrized by their parameter function

γ := T (ξ1, ξ2, ξ3) ∈ C∞(M).

∇ϕi ≡ 0 is too strong

ϕ-compatibility is too weak

 suppose ∇ preserves the 3-dimensional distribution in End(TM)
spanned by ϕi as do quaternionic connections (qK case):

∇Xϕi = β(ηk(X)ϕj − ηj(X)ϕk) ∀X ∈ X(M)

for every (i, j, k) even permutation of (1, 2, 3).
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The canonical connection: general existence

Theorem

An almost 3-contact metric manifold (M,ϕi, ξi, ηi, g) admits a metric
connection ∇ with skew torsion such that for some smooth function β,
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Aij(X,Y ) := g((Lξjϕi)X,Y ) + dηj(X,ϕiY ) + dηj(ϕiX,Y )

for every X,Y ∈ Γ(H) and even permutation (i, j, k) of (1, 2, 3).
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2) each Nϕi
is totally skew-symmetric on H,
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Nϕi
(X,Y, Z)− dΦi(ϕiX,ϕiY, ϕiZ) = Nϕj

(X,Y, Z)− dΦj(ϕjX,ϕjY, ϕjZ),

4)

β is a Reeb Killing function, that is

Aii(X,Y ) = 0, Aij(X,Y ) = −Aji(X,Y ) = βΦk(X,Y )

Aij(X,Y ) := g((Lξjϕi)X,Y ) + dηj(X,ϕiY ) + dηj(ϕiX,Y )

for every X,Y ∈ Γ(H) and even permutation (i, j, k) of (1, 2, 3).
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If such a connection ∇ exists, it is unique and ϕ-compatible for every
almost contact metric structure ϕ in the associated sphere ΣM .

∇ is called the canonical connection of M . It satisfies

∇Xϕi = β(ηk(X)ϕj − ηj(X)ϕk),

∇Xξi = β(ηk(X)ξj − ηj(X)ξk),

∇Xηi = β(ηk(X)ηj − ηj(X)ηk).

If β = 0, then ∇ϕi = ∇ξi = ∇ηi = 0.

Definition
We say that an almost 3-contact metric manifold is canonical if it admits
a (unique) canonical connection.

If β = 0 (⇔ Aij = 0 ∀i, j = 1, 2, 3) M will be called parallel canonical.



The canonical connection ∇ satisfies

∇Ψ = 0, ∇η123 = 0,

Ψ := Φ1 ∧ Φ1 + Φ2 ∧ Φ2 + Φ3 ∧ Φ3, fundamental 4-form. In particular

hol(∇) ⊂ (sp(n)⊕ sp(1))⊕ so(3) ⊂ so(4n)⊕ so(3).

For parallel canonical manifolds (β = 0): hol(∇) ⊂ sp(n)

Theorem

For a canonical manifold, each structure (ϕi, ξi, ηi, g) (and thus each
ϕ ∈ ΣM ) admits a characteristic connection ∇i, which is related to ∇ by

∇ = ∇i − β

2
(ηj ∧ Φj + ηk ∧ Φk)

(i, j, k) even permutation of (1, 2, 3).

For β = 0: ∇1 = ∇2 = ∇3 = ∇. [first known examples where this happens!]
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Theorem

Every 3-(α, δ)-Sasaki manifold is canonical with β = 2(δ − 2α).

It is parallel canonical iff δ = 2α (⇒ αδ > 0).

The canonical connection of a 3-(α, δ)-Sasaki manifold has torsion

T =

3∑
i=1

ηi ∧ dηi + 8(δ − α) η123

and satisfies ∇T = 0.

3-α-Sasaki manifolds (α = δ): T =
∑
i ηi ∧ dηi

quat. Heisenberg groups (δ = 0, 2α = λ): T =
∑
i ηi ∧ dηi − 4λη123
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The geometry of 3-(α, δ)-Sasaki manifolds

Using the canonical connection ∇ and applying Agricola-Höll criterion:

Theorem

Let (M,ϕi, ξi, ηi, g) be a 3-(α, δ)-Sasaki manifold. Then the metric cone

(M̄, ḡ) = (M × R+, a2r2g + dr2), a = −β
2
,

is HKT manifold.

Moreover, every 3-(α, δ)-Sasakian manifold admits an underlying
quaternionic contact structure, and the canonical connection turns out to
be a quaternionic contact connection. In fact, it is qc-Einstein (Ivanov -
Minchev - Vassilev, 2016) and this allows to determine the Riemannian
Ricci curvature:
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Theorem

The Riemannian Ricci curvature of a 3-(α, δ)-Sasaki manifold is

Ricg = 2α
(
2δ(n+ 2)− 3α

)
g + 2(α− δ)

(
(2n+ 3)α− δ

) 3∑
i=1

ηi ⊗ ηi

The ∇-Ricci curvature is

Ric = 4α{δ(n+ 2)− 3α} g + 4α{δ(2− n)− 5α}
3∑
i=1

ηi ⊗ ηi.

The property of being symmetric follows for Ric from ∇T = 0.

M is Riemannian Einstein iff α = δ or δ = (2n+ 3)α.

The manifold is ∇-Einstein iff δ(2− n) = 5α.

The manifold is both Riemannian Einstein and ∇-Einstein if and
only if dimM = 7 and δ = 5α (happens for example for ‘compatible’

nearly parallel G2-str., see next).
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7-dimensional 3-(α, δ)-Sasaki manifolds

Theorem

Any 7-dimensional 3-(α, δ)-Sasaki manifold admits a a cocalibrated
G2-structure (Fernandez-Gray type W1 ⊕W3) given by the 3-form

ω :=

3∑
i=1

ηi ∧ ΦHi + η123.

Its characteristic connection ∇ coincides with the canonical connection.

This G2-structure defines a unique canonical spinor field ψ0 such that

∇ψ0 = 0, ω · ψ0 = −7ψ0, |ψ0| = 1.



Theorem
1) The canonical spinor field ψ0 is a generalized Killing spinor:

∇gXψ0 = −3α

2
X·ψ0 for X ∈ H, ∇gY ψ0 =

2α− δ
2

Y ·ψ0 for Y ∈ V.

The two generalized Killing numbers coincide iff δ = 5α,
corresponding to a nearly parallel G2-structure. (Gray-Fernandez
type W1)
[δ = 5α is the only case where M is Einstein and ∇-Einstein].

2) The Clifford products ψi := ξi ·ψ0, i = 1, 2, 3, are generalized Killing
spinors:

∇gξiψi =
2α− δ

2
ξi · ψi, ∇gξjψi = −3δ − 2α

2
ξj · ψi (i 6= j),

∇gXψi =
α

2
X · ψi for X ∈ H.

Any two of the generalized Killing numbers coincide iff α = δ, i. e. if
M7 is 3-α-Sasakian.



Homogeneous 3-Sasakian manifolds

Theorem (Boyer, Galicki, Mann, 1994)

Let (M,ϕi, ξi, ηi, g) be a homogeneous 3-Sasakian manifold. Then M is
one of the following homogeneous spaces:

Sp(n+ 1)

Sp(n)
,

Sp(n+ 1)

Sp(n)× Z2
,

SU(m+ 2)

S(U(m)×U(1))
,

SO(k + 4)

SO(k)× Sp(1)
,

G2

Sp(1)
,

F4

Sp(3)
,

E6

SU(6)
,

E7

Spin(12)
,

E8

E7
.

Here n ≥ 0, m ≥ 1 and k ≥ 3.

They are all simply connected except for RP 4n+3 ' Sp(n+1)
Sp(n)×Z2

1-1 correspondence between simply connected 3-Sasakian
homogeneous manifolds and compact simple Lie algebras



Uniform description of homogeneous 3-Sasakian manifolds
(Draper, Ortega, Palomo, 2018)

Definition

A 3-Sasakian data is a triple (G,G0, H) of Lie groups such that

G is a compact, simple Lie Group

H ⊂ G0 ⊂ G connected Lie subgroups

and the Lie algebras h ⊂ g0 ⊂ g satisfy:

g0 = h⊕ sp(1) with sp(1) and h commuting subalgebras,

(g, g0) form a symmetric pair, g = g0 ⊕ g1,

the complexification gC1 = C2 ⊗C W for some hC-module of
dimCW = 2n,

hC, sp(1)C ⊂ gC0 act on gC1 by their action on W and C2.

Remark In total the Lie algebra decomposes as

g =

g0︷ ︸︸ ︷
h⊕ sp(1)h⊕ sp(1)⊕ g1︸ ︷︷ ︸

m

(m is a reductive complement for M = G/H)
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Homogeneous 3-Sasakian model

Theorem (Draper, Ortega, Palomo, 2018)

Let (G,G0, H) be 3-Sasakian data. On M = G/H consider the
G-invariant structure defined by the Ad(H)-invariant tensors on m:

the inner product g

g
∣∣
sp(1)

=
−κ

4(n+ 2)
, g

∣∣
g1

=
−κ

8(n+ 2)
, g

∣∣
sp(1)×g1

= 0

κ the Killing form on G.

ξi = σi, i = 1, 2, 3, σi standard basis of sp(1)=V⊂g0, ηi = g(ξi, ·)
the endomorphisms ϕi as

ϕi
∣∣
sp(1)

=
1

2
ad(ξi), ϕi

∣∣
g1

= ad(ξi).

Then (M,ϕi, ξi, ηi, g) defines a homogeneous 3-Sasakian manifold.

Conversely every homogeneous 3-Sasakian manifold M 6= RP 4n+3 is
obtained by this construction.

Remark: M fibers over the quaternion Kähler symmetric space G/G0.



Homogeneous positive 3-(α, δ)-Sasakian model

Idea: Use H-homothetic deformation to obtain 3-(α, δ)-Sasakian mnfds
for αδ > 0

Theorem

Let (G,G0, H) be 3-Sasakian data, αδ > 0. On M = G/H consider the
G-invariant structure by the Ad(H)-invariant tensors on m:

g
∣∣
sp(1)

=
−κ

4δ2(n+ 2)
, g

∣∣
g1

=
−κ

8αδ(n+ 2)
, g

∣∣
sp(1)×g1

= 0

ξi = δσi, ηi = g(ξi, ·)

ϕi
∣∣
sp(1)

=
1

2δ
ad(ξi), ϕi

∣∣
g1

=
1

δ
ad(ξi).

Then (M,ϕi, ξi, ηi, g) defines a homogeneous 3-(α, δ)-Sasakian mnfd.

Conversely every homogeneous 3-(α, δ)-Sasakian manifold M 6= RP 4n+3

with αδ > 0 is obtained by this construction.

Remark: (G/H, g) is naturally reductive ⇔ δ = 2α ⇔ parallel 3-(α, δ).
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Generalized setup

Definition

A generalized 3-Sasakian data is a triple (G,G0, H) of Lie groups such
that

G is a real simple Lie Group

H ⊂ G0 ⊂ G connected Lie subgroups

and the Lie algebras h ⊂ g0 ⊂ g satisfy:

g0 = h⊕ sp(1) with sp(1) and h commuting subalgebras,

(g, g0) form a symmetric pair, g = g0 ⊕ g1,

the complexification gC1 = C2 ⊗C W for some hC-module of
dimCW = 2n,

hC, sp(1)C ⊂ gC0 act on gC1 by their action on W and C2.

If (g, g0) is a compact symmetric pair such that (G,G0, H) is 3-Sasakian
data, then (G∗, G0, H) is generalized 3-Sasakian data, where (g∗, g0) is
the dual non-compact symmetric pair.
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Negative homogeneous 3-(α, δ)-Sasakian manifolds

Theorem

Let (G∗, G0, H) be non-compact generalized 3-Sasakian data, αδ < 0.

On M = G∗/H consider the G∗-invariant structure defined by the
Ad(H)-invariant tensors on m

g
∣∣
sp(1)

=
−κ

4δ2(n+ 2)
, g

∣∣
g1

=
−κ

8αδ(n+ 2)
, g

∣∣
sp(1)×g1

= 0,

ξi = δσi, ηi = g(ξi, ·),

ϕi
∣∣
sp(1)

=
1

2δ
ad(ξi), ϕi

∣∣
g1

=
1

δ
ad(ξi),

κ the Killing form on G∗, σi standard basis sp(1) = V ⊂ g0.

Then (M, g, ξi, ηi, ϕi) defines a homogeneous 3-(α, δ)-Sasakian manifold.

Question: Does this model cover all homogenous negative 3-(α, δ)-Sasaki
manifolds?



In total we obtain homogeneous 3-(α, δ)-Sasakian structures on the
following list of homogeneous spaces (G/H compact, G∗/H
non-compact):

G G∗ H G0 dim
Sp(n+ 1) Sp(n, 1) Sp(n) Sp(n)Sp(1) 4n+ 3
SU(n+ 2) SU(n, 2) S(U(n)×U(1)) S(U(n)U(2)) 4n+ 3
SO(n+ 4) SO(n, 4) SO(n)× Sp(1) SO(n)SO(4) 4n+ 3

G2 G2
2 Sp(1) SO(4) 11

F4 F−20
4 Sp(3) Sp(3)Sp(1) 31

E6 E2
6 SU(6) SU(6)Sp(1) 43

E7 E−5
7 Spin(12) Spin(12)Sp(1) 67

E8 E−24
8 E7 E7Sp(1) 115

.

Remark: RP 4n+3 = Sp(n+1)
Sp(n)×Z2

and non compact dual Sp(n,1)
Sp(n)×Z2

also

admit 3-(α, δ)-Sasaki structures, as the quotient of S4n+3 = Sp(n+1)
Sp(n) ,

resp. Sp(n,1)
Sp(n) by Z2 inside the fiber.



Definiteness of curvature operators

Consider the Riemannian curvature as a symmetric operator

Rg : Λ2M → Λ2M 〈Rg(X ∧ Y ), Z ∧ V 〉 = −g(Rg(X,Y )Z, V ).

Definition

A Riemannian manifold (M, g) is said to have strongly positive curvature
if there exists a 4-form ω such that Rg + ω is positive-definite at every
point x ∈M (Thorpe, 1971).

For every 2-plane σ, being 〈ω(σ), σ〉 = 0, one has

sec(σ) = 〈Rg(σ), σ〉 = 〈(Rg + ω)(σ), σ〉.

Then,

Rg > 0 =⇒ strongly positive curvature =⇒ positive sectional curvature

Rg ≥ 0 =⇒ strongly non-negative curvature =⇒ non-negative sec. curv.



On a 3-(α, δ)-Sasakian manifold the symmetric operators defined by the
Riemannian curvature and the curvature of the canonical connection:

Rg : Λ2M → Λ2M R : Λ2M → Λ2M

are related by

Rg − 1

4
σT= R+

1

4
GT

with

〈GT (X ∧ Y ), Z ∧ V 〉 := g(T (X,Y ), T (Z, V )),

〈σT (X ∧ Y ), Z ∧ V 〉 :=
1

2
dT (X,Y, Z, V ).

(M, g) is strongly non-negative with 4-form − 1
4σT if and only if

R+
1

4
GT ≥ 0.

Being GT ≥ 0, if R ≥ 0 we directly have strong non-negativity.



Theorem

Let M be a homogeneous 3-(α, δ)-Sasakian manifold obtained from a
generalized 3-Sasakian data.

If αδ < 0 then R ≤ 0.

If αδ > 0 then
R ≥ 0 if and only if αβ ≥ 0

.

Then, on a positive homogeneous 3-(α, δ)-Sasaki manifold with αβ ≥ 0:

Rg − 1

4
σT = R+

1

4
GT ≥ 0.

The converse also holds, i.e.

Theorem

A positive homogeneous 3-(α, δ)-Sasaki manifold is strongly non-negative
with 4-form − 1

4σT if and only if αβ ≥ 0.



Strong positivity is much more restrictive than strong non-negativity.

Strong positivity implies strict positive sectional curvature.

Homogeneous manifolds with strictly positive sectional curvature have
been classified (Wallach 1972, Bérard Bergery 1976).

Only the 7-dimensional Aloff-Wallach-space W 1,1, the spheres S4n+3 and
real projective spaces RP 4n+3 admit homogeneous 3-(α, δ)-Sasaki
structures.

Theorem

The 3-(α, δ)-Sasakian spaces

W 1,1 = SU(3)/S1 with 4-form −( 1
4 + ε)σT for small ε > 0,

S4n+3, RP 4n+3, n ≥ 1, with 4-form δ
8ασT |Λ4H − ( 1

4 + ε)σT for
small ε > 0

are strongly positive if and only if αβ > 0.
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