Bedlewo, October 2019 Dirac operators in differential geometry and global analysis - in memory of Thomas Friedrich

Generalizations of 3-Sasakian manifolds and connections with skew torsion

Giulia Dileo
University of Bari (Italy)

Joint work with Ilka Agricola and Leander Stecker (Marburg)

Context: Geometry of almost 3-contact metric manifolds

Goals & Motivation

Define and investigate new classes of such manifolds:

- the Levi-Civita connection is not well-adapted to the structure
- look for 'good' metric connections with skew torsion

In particular,

- introduce notion of φ -compatible connections,
- make them unique by a certain extra condition → canonical connection,
- define the new class of canonical almost 3-contact metric manifolds
- define and study 3- (α, δ) -Sasaki manifolds
- compute torsion, holonomy, curvature of the canonical connection,
- provide lots of examples, classify the homogeneous ones, further applications (metric cone, existence of generalized Killing spinors...)

Almost contact metric structures

- $(M^{2n+1},\varphi,\xi,\eta,g)$ almost contact metric manifold if
 - ξ is a vector field ξ , called the *Reeb vector field*,
 - $\eta = g(\xi, \cdot)$,
 - φ is a (1,1)-tensor field such that $\varphi \xi = 0$ and

$$\varphi^2 = -I, \quad g(\varphi X, \varphi Y) = g(X, Y) \text{ on } \langle \xi \rangle^{\perp} = \ker \eta.$$

Equivalently, the structural group is reducible to $U(n)\times\{1\}.$

Almost contact metric structures

 $(M^{2n+1},\varphi,\xi,\eta,g)$ almost contact metric manifold if

- ξ is a vector field ξ , called the *Reeb vector field*,
- $\eta = g(\xi, \cdot)$,
- φ is a (1,1)-tensor field such that $\varphi \xi = 0$ and

$$\varphi^2 = -I, \quad g(\varphi X, \varphi Y) = g(X, Y) \text{ on } \langle \xi \rangle^{\perp} = \ker \eta.$$

Equivalently, the structural group is reducible to $U(n) \times \{1\}$.

Then,

• the fundamental 2-form is defined by

$$\Phi(X,Y) = g(X,\varphi Y),$$

- it is called normal if $N_{\varphi} := [\varphi, \varphi] + d\eta \otimes \xi \equiv 0$,
- α -Sasakian, $\alpha \in \mathbb{R}^*$, if $d\eta = 2\alpha\Phi$, $N_{\varphi} \equiv 0 \ (\Rightarrow \xi \text{ Killing})$
- Sasakian if 1-Sasakian.

A metric connection ∇ on (M,g) has totally skew-symmetric torsion (skew torsion for brief) if the (0,3)-tensor field

$$T(X,Y,Z) := g(\nabla_X Y - \nabla_Y X - [X,Y],Z)$$

is a 3-form (\Leftrightarrow same geodesics as ∇^g)

$$\Rightarrow$$
 $g(\nabla_X Y, Z) = g(\nabla_X^g Y, Z) + \frac{1}{2} T(X, Y, Z)$

Given a G-structure $(G \subset SO(n))$ on (M,g), if there exists a unique ∇ with skew torsion preserving the structure, ∇ is called characteristic connection.

A metric connection ∇ on (M,g) has totally skew-symmetric torsion (skew torsion for brief) if the (0,3)-tensor field

$$T(X,Y,Z) := g(\nabla_X Y - \nabla_Y X - [X,Y],Z)$$

is a 3-form (\Leftrightarrow same geodesics as ∇^g)

$$\Rightarrow$$
 $g(\nabla_X Y, Z) = g(\nabla_X^g Y, Z) + \frac{1}{2} T(X, Y, Z)$

Given a G-structure $(G \subset SO(n))$ on (M,g), if there exists a unique ∇ with skew torsion preserving the structure, ∇ is called characteristic connection.

Theorem (Friedrich-Ivanov, 2002)

An almost contact metric manifold $(M, \varphi, \xi, \eta, g)$ admits a unique metric connection ∇ with totally skew symmetric torsion, and such that $\nabla \eta = \nabla \xi = \nabla \varphi = 0$, if and only if

- 1. the tensor $N_{\varphi}:=[\varphi,\varphi]+d\eta\otimes\xi$ is totally skew-symmetric,
- 2. ξ is a Killing vector field.

In particular, it exists for α -Sasaki manifolds and its torsion $T=\eta \wedge d\eta$ is parallel.

Almost 3-contact metric manifolds

 $(M^{4n+3}, \varphi_i, \xi_i, \eta_i, g), i = 1, 2, 3$ is almost 3-contact metric manifold if

- ullet each structure $(\varphi_i, \xi_i, \eta_i, g)$ is almost contact metric
- on the *vertical distribution* $\mathcal{V} := \langle \xi_1, \xi_2, \xi_3 \rangle$:

$$\varphi_i \xi_j = \xi_k = -\varphi_j \xi_i \quad (\Rightarrow \xi_1, \xi_2, \xi_3 \text{ are orthogonal})$$

• on the horizontal distribution $\mathcal{H} := \mathcal{V}^{\perp} = \bigcap_{i=1}^{3} \ker \eta_i$:

$$\varphi_i\varphi_j=\varphi_k=-\varphi_j\varphi_i$$

for every even permutation (i, j, k) of (1, 2, 3).

Almost 3-contact metric manifolds

 $(M^{4n+3}, \varphi_i, \xi_i, \eta_i, g), i = 1, 2, 3$ is almost 3-contact metric manifold if

- ullet each structure $(\varphi_i, \xi_i, \eta_i, g)$ is almost contact metric
- on the *vertical distribution* $\mathcal{V} := \langle \xi_1, \xi_2, \xi_3 \rangle$:

$$\varphi_i \xi_j = \xi_k = -\varphi_j \xi_i \quad (\Rightarrow \xi_1, \xi_2, \xi_3 \text{ are orthogonal})$$

• on the horizontal distribution $\mathcal{H} := \mathcal{V}^{\perp} = \bigcap_{i=1}^{3} \ker \eta_i$:

$$\varphi_i \varphi_j = \varphi_k = -\varphi_j \varphi_i$$

for every even permutation (i,j,k) of (1,2,3). Then,

- structure group reducible to $\mathrm{Sp}(n) imes \{1_3\}$
- M is said to be hypernormal if $N_{\varphi_i} \equiv 0$, i = 1, 2, 3.
- 3- α -Sasakian if each structure is α -Sasakian
- 3-Sasakian if each structure is Sasakian ⇒ Einstein!

Theorem (Kashiwada, 2001)

If $d\eta_i = 2\Phi_i$, i = 1, 2, 3, then M is hypernormal (and thus 3-Sasakian).

The associated sphere of structures

An almost 3-contact metric manifold $(M, \varphi_i, \xi_i, \eta_i, g)$ carries a sphere $\Sigma_M \cong S^2$ of almost contact metric structures.

For every $a=(a_1,a_2,a_3)\in\mathbb{R}^3$ such that $a_1^2+a_2^2+a_3^2=1$, put

$$\varphi_a = \sum_{i=1}^3 a_i \varphi_i, \quad \xi_a = \sum_{i=1}^3 a_i \xi_i, \quad \eta_a = \sum_{i=1}^3 a_i \eta_i.$$

Then $(\varphi_a, \xi_a, \eta_a, g)$ is an almost contact metric structure.

Theorem (Cappelletti Montano - De Nicola - Yudin, 2016) If $N_{\varphi_i}=0$ for all i=1,2,3, then $N_{\varphi}=0$ for all $\varphi\in\Sigma_M$.

Theorem

If each N_{φ_i} is skew symmetric on \mathcal{H} (respectively on TM), then for all $\varphi \in \Sigma_M$, N_{φ} is skew symmetric on \mathcal{H} (respectively on TM).

Proposition

Let $(M, \varphi_i, \xi_i, \eta_i, g)$ be a almost 3-contact metric manifold. If each $(\varphi_i, \xi_i, \eta_i, g)$, i=1,2,3 admits a characteristic connection, the same holds for every structure in the sphere.

Proposition

Let $(M, \varphi_i, \xi_i, \eta_i, g)$ be a almost 3-contact metric manifold. If each $(\varphi_i, \xi_i, \eta_i, g)$, i = 1, 2, 3 admits a characteristic connection, the same holds for every structure in the sphere.

Do these connections coincide?

Is it possible to find a metric connection with skew torsion parallelizing ALL the structure tensor fields?

Proposition

Let $(M, \varphi_i, \xi_i, \eta_i, g)$ be a almost 3-contact metric manifold. If each $(\varphi_i, \xi_i, \eta_i, g)$, i=1,2,3 admits a characteristic connection, the same holds for every structure in the sphere.

Do these connections coincide?

Is it possible to find a metric connection with skew torsion parallelizing ALL the structure tensor fields?

! For a 3-Sasakian manifold the characteristic connection of the structure $(\varphi_i, \xi_i, \eta_i, g)$ is

$$\nabla^i = \nabla^g + \frac{1}{2}T_i, \qquad T_i = \eta_i \wedge d\eta_i.$$

For $i \neq j$, $T_i \neq T_j$ and thus $\nabla^i \neq \nabla^j$.

We need to relax the requirement that the structure should be parallel

Canonical connection for 7-dimensional 3-Sasaki manifolds (Agricola-Friedrich, 2010)

Let $(M, \varphi_i, \xi_i, \eta_i, g)$ be a 7-dimensional 3-Sasakian manifold. The 3-form

$$\omega := \frac{1}{2} \sum_{i} \eta_i \wedge d\eta_i + 4 \eta_{123} \qquad \eta_{123} := \eta_1 \wedge \eta_2 \wedge \eta_3$$

defines a *cocalibrated* G_2 -structure and hence admits a characteristic connection ∇ ; its torsion is

$$T = \sum_{i=1}^{3} \eta_i \wedge d\eta_i$$

 ∇ is called the canonical connection, and verifies the following:

- it preserves \mathcal{H} and \mathcal{V} ,
- \bullet $\nabla T = 0$.
- ∇ admits a parallel spinor ψ , called *canonical spinor*, such that the Clifford products $\xi_i \cdot \psi$ are exactly the 3 Riemannian Killing spinors.

Canonical connection for quaternionic Heisenberg groups

 N_p connected, simply connected 2-step nilpotent Lie group with Lie algebra $\,$

$$\mathfrak{n}_p = \text{span}(\xi_1, \xi_2, \xi_3, \tau_r, \tau_{p+r}, \tau_{2p+r}, \tau_{3p+r}), \quad r = 1, \dots, p,$$

and non-vanishing commutators ($\lambda > 0$):

$$\begin{split} [\tau_r,\tau_{p+r}] &= \lambda \xi_1 & [\tau_r,\tau_{2p+r}] &= \lambda \xi_2 & [\tau_r,\tau_{3p+r}] &= \lambda \xi_3 \\ [\tau_{2p+r},\tau_{3p+r}] &= \lambda \xi_1 & [\tau_{3p+r},\tau_{p+r}] &= \lambda \xi_2 & [\tau_{p+r},\tau_{2p+r}] &= \lambda \xi_3. \end{split}$$

 N_p admits an almost 3-contact metric structure $(\varphi_i, \xi_i, \eta_i, g_\lambda)$:

 η_i dual 1-form of ξ_i

 g_{λ} Riemannian metric such that $\{\xi_i, \tau_l\}$ is orthonormal

$$\begin{array}{rcl} \boldsymbol{\varphi}_{i} & = & \eta_{j} \otimes \boldsymbol{\xi}_{k} - \eta_{k} \otimes \boldsymbol{\xi}_{j} + \sum_{r=1}^{p} [\boldsymbol{\theta}_{r} \otimes \boldsymbol{\tau}_{ip+r} - \boldsymbol{\theta}_{ip+r} \otimes \boldsymbol{\tau}_{r} \\ & & + \boldsymbol{\theta}_{jp+r} \otimes \boldsymbol{\tau}_{kp+r} - \boldsymbol{\theta}_{kp+r} \otimes \boldsymbol{\tau}_{jp+r}] \\ & (\boldsymbol{\theta}_{l}, l = 1, \ldots, 4p, \text{ dual } 1 - \text{ form of } \boldsymbol{\tau}_{l}) \end{array}$$

The structure is hypernormal with $d\Phi_i \neq 0$.

The canonical connection (Agricola-Ferreira-Storm, 2015) is the metric connection ∇ with skew torsion

$$T = \sum_{i=1}^{3} \eta_i \wedge d\eta_i -4 \lambda \eta_{123}$$

It satisfies:

- $\nabla T = \nabla R = 0 \rightsquigarrow$ naturally reductive homogeneous space,
- $\mathfrak{hol}(\nabla) \simeq \mathfrak{su}(2)$, acting irreducibly on $\mathcal V$ and $\mathcal H$.

The canonical connection (Agricola-Ferreira-Storm, 2015) is the metric connection ∇ with skew torsion

$$T = \sum_{i=1}^{3} \eta_i \wedge d\eta_i - 4\lambda \eta_{123}$$

It satisfies:

- $\nabla T = \nabla R = 0 \rightsquigarrow$ naturally reductive homogeneous space,
- $\mathfrak{hol}(\nabla) \simeq \mathfrak{su}(2)$, acting irreducibly on $\mathcal V$ and $\mathcal H$.

In the 7-dimensional case, ∇ is the *characteristic connection* of the cocalibrated G_2 structure

$$\omega = -\eta_1 \wedge (\theta_{12} + \theta_{34}) - \eta_2 \wedge (\theta_{13} + \theta_{42}) - \eta_3 \wedge (\theta_{14} + \theta_{23}) + \eta_{123}.$$

Then, it admits a parallel spinor field ψ and the spinor fields $\psi_i := \xi_i \cdot \psi$, i = 1, 2, 3, are generalised Killing spinors:

$$\nabla_{\xi_i}^g \psi_i = \frac{\lambda}{2} \, \xi_i \cdot \psi_i, \quad \nabla_{\xi_j}^g \psi_i = -\frac{\lambda}{2} \, \xi_j \cdot \psi_i \, \, (i \neq j), \quad \nabla_X^g \psi_i = \frac{5\lambda}{4} \, X \cdot \psi_i, X \in \mathcal{H}$$

Given an almost 3-contact metric manifold $(M, \varphi_i, \xi_i, \eta_i, g)$, on the metric cone

$$(\bar{M}, \bar{g}) = (M \times \mathbb{R}^+, a^2 r^2 g + dr^2), \quad a > 0,$$

one can define an almost hyperHermitian structure (\bar{g}, J_1, J_2, J_3) .

Well-known:

- the metric cone of a 3-Sasakian manifold is hyper-Kähler
- the metric cone of the quaternionic Heisenberg group is a hyper-Kähler manifold with torsion ('HKT manifold')

Agricola-Höll, 2015: Criterion when the metric cone (for suitable a>0) is a HKT manifold (but unclear what a 'good' large class of manifolds satisfying the criterion could be)

Given an almost 3-contact metric manifold $(M, \varphi_i, \xi_i, \eta_i, g)$, on the metric cone

$$(\bar{M}, \bar{g}) = (M \times \mathbb{R}^+, a^2 r^2 g + dr^2), \quad a > 0,$$

one can define an almost hyperHermitian structure (\bar{g}, J_1, J_2, J_3) .

Well-known:

- the metric cone of a 3-Sasakian manifold is hyper-Kähler
- the metric cone of the quaternionic Heisenberg group is a hyper-Kähler manifold with torsion ('HKT manifold')

Agricola-Höll, 2015: Criterion when the metric cone (for suitable a>0) is a HKT manifold (but unclear what a 'good' large class of manifolds satisfying the criterion could be)

Is it possible to find a larger class of almost 3-contact metric manifolds with similar properties?

3- (α, δ) -Sasaki manifolds

Definition

A 3- (α, δ) -Sasaki manifold is an almost 3-contact metric manifold $(M, \varphi_i, \xi_i, \eta_i, g)$ such that

$$d\eta_i = 2\alpha \Phi_i + 2(\alpha - \delta)\eta_j \wedge \eta_k,$$

 $\alpha \in \mathbb{R}^*, \delta \in \mathbb{R}$, (i, j, k) even permutation of (1, 2, 3).

3- (α, δ) -Sasaki manifolds

Definition

A 3- (α, δ) -Sasaki manifold is an almost 3-contact metric manifold $(M, \varphi_i, \xi_i, \eta_i, g)$ such that

$$d\eta_i = 2\alpha \Phi_i + 2(\alpha - \delta)\eta_j \wedge \eta_k,$$

 $\alpha \in \mathbb{R}^*, \delta \in \mathbb{R}$, (i, j, k) even permutation of (1, 2, 3).

- 3- α -Sasakian manifolds: $d\eta_i = 2\alpha\Phi_i \rightsquigarrow \alpha = \delta$
- quat. Heisenberg groups: $d\eta_i = \lambda(\Phi_i + \eta_j \wedge \eta_k) \leadsto 2\alpha = \lambda, \delta = 0$

We call the structure degenerate if $\delta=0$ and nondegenerate otherwise.

3- (α, δ) -Sasaki manifolds

Definition

A 3- (α, δ) -Sasaki manifold is an almost 3-contact metric manifold $(M, \varphi_i, \xi_i, \eta_i, g)$ such that

$$d\eta_i = 2\alpha \Phi_i + 2(\alpha - \delta)\eta_j \wedge \eta_k,$$

 $\alpha \in \mathbb{R}^*, \delta \in \mathbb{R}$, (i, j, k) even permutation of (1, 2, 3).

- 3- α -Sasakian manifolds: $d\eta_i = 2\alpha \Phi_i \leadsto \alpha = \delta$
- quat. Heisenberg groups: $d\eta_i = \lambda(\Phi_i + \eta_j \wedge \eta_k) \leadsto 2\alpha = \lambda, \delta = 0$

We call the structure degenerate if $\delta=0$ and nondegenerate otherwise.

Theorem

- The structure is hypernormal (generalization of Kashiwada's thm, case $\alpha = \delta$).
- ullet The distribution ${\cal V}$ is integrable with totally geodesic leaves.
- Each ξ_i is a Killing vector field, and $[\xi_i, \xi_j] = 2\delta \xi_k$.

Definition

An \mathcal{H} -homothetic deformation of an almost 3-contact metric strucure $(\varphi_i, \xi_i, \eta_i, g)$ is given by

$$\eta'_i = c\eta_i, \quad \xi'_i = \frac{1}{c}\xi_i, \qquad \varphi'_i = \varphi_i, \qquad g' = ag + b\sum_{i=1}^3 \eta_i \otimes \eta_i,$$

 $a, b, c \in \mathbb{R}, a > 0, c^2 = a + b > 0.$

If $(\varphi_i, \xi_i, \eta_i, g)$ is 3- (α, δ) -Sasaki, then $(\varphi_i', \xi_i', \eta_i', g')$ is 3- (α', δ') -Sasaki with $\alpha' = \alpha \frac{c}{a}, \qquad \delta' = \frac{\delta}{a}.$

- ullet the class of degenerate 3-($lpha,\delta$)-Sasaki structures is preserved
- ullet in the non-degenerate case, the sign of $\alpha\delta$ is preserved.

Definition

We say that a 3- (α, δ) -Sasaki manifold is positive (resp. negative) if $\alpha \delta > 0$ (resp $\alpha \delta < 0$).

Proposition

 $\alpha\delta > 0 \Longleftrightarrow M$ is \mathcal{H} -homothetic to a 3-Sasakian manifold ($\alpha = \delta = 1$) $\alpha\delta < 0 \Longleftrightarrow M$ is \mathcal{H} -homothetic to one with $\alpha = -1$, $\delta = 1$.

Do there exist 3-(α , δ)-Sasaki manifolds with $\alpha\delta < 0$?

YES - here is the construction:

Definition

A negative 3-Sasakian manifold is a normal almost 3-contact manifold $(M^{4n+3}, \varphi_i, \xi_i, \eta_i)$ endowed with a compatible semi-Riemannian metric \tilde{g} of has signature (3,4n) such that $d\eta_i(X,Y)=2\tilde{g}(X,\varphi_iY)$.

Proposition

If $(M, \varphi_i, \xi_i, \eta_i, \tilde{g})$ is a negative 3-Sasakian manifold, take

$$g = -\tilde{g} + 2\sum_{i=1}^{3} \eta_i \otimes \eta_i.$$

Then $(\varphi_i, \xi_i, \eta_i, g)$ is a 3- (α, δ) -Sasaki structure with $\alpha = -1$ and $\delta = 1$.

It is known that quaternionic Kähler (not hyperKähler) manifolds with negative scalar curvature admit a canonically associated principal $\mathrm{SO}(3)$ -bundle P(M) which is endowed with a negative 3-Sasakian structure (Konishi, 1975 - Tanno, 1996).

φ -compatible connections

Definition

Let $(M, \varphi_i, \xi_i, \eta_i, g)$ be an almost 3-contact metric manifold, (φ, ξ, η, g) a structure in the associated sphere Σ_M . Let ∇ be a metric connection with skew torsion on M. We say that ∇ is a φ -compatible connection if

- 1) ∇ preserves the splitting $TM = \mathcal{H} \oplus \mathcal{V}$,
- 2) $(\nabla_X \varphi)Y = 0 \quad \forall X, Y \in \Gamma(\mathcal{H}).$

φ -compatible connections

Definition

Let $(M, \varphi_i, \xi_i, \eta_i, g)$ be an almost 3-contact metric manifold, (φ, ξ, η, g) a structure in the associated sphere Σ_M . Let ∇ be a metric connection with skew torsion on M. We say that ∇ is a φ -compatible connection if

- 1) ∇ preserves the splitting $TM = \mathcal{H} \oplus \mathcal{V}$,
- 2) $(\nabla_X \varphi) Y = 0 \quad \forall X, Y \in \Gamma(\mathcal{H}).$

Theorem

M admits a φ -compatible connection if and only if

- 1) N_{φ} is skew-symmetric on \mathcal{H} ;
- 2) $(\mathcal{L}_{\xi_i}g)(X,Y)=0$ for every $X,Y\in\Gamma(\mathcal{H})$ and i=1,2,3;
- 3) $(\mathcal{L}_X g)(\xi_i, \xi_j) = 0$ for every $X \in \Gamma(\mathcal{H})$ and i, j = 1, 2, 3.

Remark If each ξ_i is Killing, 2) and 3) hold.

! φ -compatible connections are not uniquely determined they are parametrized by their parameter function

$$\gamma := T(\xi_1, \xi_2, \xi_3) \in C^{\infty}(M).$$

! φ -compatible connections are not uniquely determined they are parametrized by their parameter function

$$\gamma := T(\xi_1, \xi_2, \xi_3) \in C^{\infty}(M).$$

 $\nabla \varphi_i \equiv 0 \ \mbox{is too strong}$ $\varphi\mbox{-compatibility is too weak}$

 φ-compatible connections are not uniquely determined they are parametrized by their parameter function

$$\gamma := T(\xi_1, \xi_2, \xi_3) \in C^{\infty}(M).$$

 $\nabla \varphi_i \equiv 0 \ \mbox{is too strong}$ $\varphi\mbox{-compatibility is too weak}$

suppose ∇ preserves the 3-dimensional distribution in $\operatorname{End}(TM)$ spanned by φ_i as do quaternionic connections (qK case):

$$\nabla_X \varphi_i = \beta(\eta_k(X)\varphi_j - \eta_j(X)\varphi_k) \quad \forall X \in \mathfrak{X}(M)$$

for every (i, j, k) even permutation of (1, 2, 3).

Theorem

An almost 3-contact metric manifold $(M, \varphi_i, \xi_i, \eta_i, g)$ admits a metric connection ∇ with skew torsion such that for some smooth function β ,

$$\nabla_X \varphi_i = \beta(\eta_k(X)\varphi_j - \eta_j(X)\varphi_k) \quad \forall X \in \mathfrak{X}(M)$$

for every even permutation (i,j,k) of (1,2,3), if and only if

- 1)
- 2)
- 3)

Theorem

An almost 3-contact metric manifold $(M, \varphi_i, \xi_i, \eta_i, g)$ admits a metric connection ∇ with skew torsion such that for some smooth function β ,

$$\nabla_X \varphi_i = \beta(\eta_k(X)\varphi_j - \eta_j(X)\varphi_k) \quad \forall X \in \mathfrak{X}(M)$$

for every even permutation (i, j, k) of (1, 2, 3), if and only if

- 1) each ξ_i is a Killing vector field,
- 2)
- 3)

Theorem

An almost 3-contact metric manifold $(M, \varphi_i, \xi_i, \eta_i, g)$ admits a metric connection ∇ with skew torsion such that for some smooth function β ,

$$\nabla_X \varphi_i = \beta(\eta_k(X)\varphi_j - \eta_j(X)\varphi_k) \quad \forall X \in \mathfrak{X}(M)$$

for every even permutation (i, j, k) of (1, 2, 3), if and only if

- 1) each ξ_i is a Killing vector field,
- 2) each N_{φ_i} is totally skew-symmetric on \mathcal{H} ,
- 3)

Theorem

An almost 3-contact metric manifold $(M, \varphi_i, \xi_i, \eta_i, g)$ admits a metric connection ∇ with skew torsion such that for some smooth function β ,

$$\nabla_X \varphi_i = \beta(\eta_k(X)\varphi_j - \eta_j(X)\varphi_k) \quad \forall X \in \mathfrak{X}(M)$$

for every even permutation (i, j, k) of (1, 2, 3), if and only if

- 1) each ξ_i is a Killing vector field,
- 2) each N_{φ_i} is totally skew-symmetric on \mathcal{H} ,
- 3) for any $X,Y,Z\in\Gamma(\mathcal{H})$ and any i,j=1,2,3,

$$N_{\varphi_i}(X,Y,Z) - d\Phi_i(\varphi_i X, \varphi_i Y, \varphi_i Z) = N_{\varphi_j}(X,Y,Z) - d\Phi_j(\varphi_j X, \varphi_j Y, \varphi_j Z),$$

Theorem

An almost 3-contact metric manifold $(M, \varphi_i, \xi_i, \eta_i, g)$ admits a metric connection ∇ with skew torsion such that for some smooth function β ,

$$\nabla_X \varphi_i = \beta(\eta_k(X)\varphi_j - \eta_j(X)\varphi_k) \quad \forall X \in \mathfrak{X}(M)$$

for every even permutation (i,j,k) of (1,2,3), if and only if

- 1) each ξ_i is a Killing vector field,
- 2) each N_{φ_i} is totally skew-symmetric on \mathcal{H} ,
- 3) for any $X,Y,Z\in\Gamma(\mathcal{H})$ and any i,j=1,2,3,

$$N_{\varphi_i}(X,Y,Z) - d\Phi_i(\varphi_i X, \varphi_i Y, \varphi_i Z) = N_{\varphi_j}(X,Y,Z) - d\Phi_j(\varphi_j X, \varphi_j Y, \varphi_j Z),$$

4) β is a Reeb Killing function, that is

$$A_{ii}(X,Y) = 0, \qquad A_{ij}(X,Y) = -A_{ji}(X,Y) = \beta \Phi_k(X,Y)$$

$$A_{ij}(X,Y) := g((\mathcal{L}_{\xi_j}\varphi_i)X,Y) + d\eta_j(X,\varphi_iY) + d\eta_j(\varphi_iX,Y)$$

for every $X,Y\in\Gamma(\mathcal{H})$ and even permutation (i,j,k) of (1,2,3).

If such a connection ∇ exists, it is unique and φ -compatible for every almost contact metric structure φ in the associated sphere Σ_M .

 ∇ is called the canonical connection of M. It satisfies

$$\nabla_X \varphi_i = \frac{\beta}{\beta} (\eta_k(X) \varphi_j - \eta_j(X) \varphi_k),$$

$$\nabla_X \xi_i = \frac{\beta}{\beta} (\eta_k(X) \xi_j - \eta_j(X) \xi_k),$$

$$\nabla_X \eta_i = \frac{\beta}{\beta} (\eta_k(X) \eta_j - \eta_j(X) \eta_k).$$

If $\beta = 0$, then $\nabla \varphi_i = \nabla \xi_i = \nabla \eta_i = 0$.

Definition

We say that an almost 3-contact metric manifold is canonical if it admits a (unique) canonical connection.

If
$$\beta = 0$$
 ($\Leftrightarrow A_{ij} = 0 \ \forall i, j = 1, 2, 3$) M will be called parallel canonical.

The canonical connection ∇ satisfies

$$\nabla \Psi = 0, \qquad \nabla \eta_{123} = 0,$$

 $\Psi:=\Phi_1\wedge\Phi_1+\Phi_2\wedge\Phi_2+\Phi_3\wedge\Phi_3\text{, fundamental 4-form. In particular}$

$$\mathfrak{hol}(\nabla)\subset (\mathfrak{sp}(n)\oplus \mathfrak{sp}(1))\oplus \mathfrak{so}(3)\subset \mathfrak{so}(4n)\oplus \mathfrak{so}(3).$$

For parallel canonical manifolds ($\beta = 0$): $\mathfrak{hol}(\nabla) \subset \mathfrak{sp}(n)$

The canonical connection ∇ satisfies

$$\nabla \Psi = 0, \qquad \nabla \eta_{123} = 0,$$

 $\Psi:=\Phi_1\wedge\Phi_1+\Phi_2\wedge\Phi_2+\Phi_3\wedge\Phi_3,$ fundamental 4-form. In particular

$$\mathfrak{hol}(\nabla)\subset (\mathfrak{sp}(n)\oplus \mathfrak{sp}(1))\oplus \mathfrak{so}(3)\subset \mathfrak{so}(4n)\oplus \mathfrak{so}(3).$$

For parallel canonical manifolds ($\beta = 0$): $\mathfrak{hol}(\nabla) \subset \mathfrak{sp}(n)$

Theorem

For a canonical manifold, each structure $(\varphi_i, \xi_i, \eta_i, g)$ (and thus each $\varphi \in \Sigma_M$) admits a characteristic connection ∇^i , which is related to ∇ by

$$\nabla = \nabla^i - \frac{\beta}{2} (\eta_j \wedge \Phi_j + \eta_k \wedge \Phi_k)$$

(i, j, k) even permutation of (1, 2, 3).

For $\beta = 0$: $\nabla^1 = \nabla^2 = \nabla^3 = \nabla$. [first known examples where this happens!]

Theorem

Every 3- (α, δ) -Sasaki manifold is canonical with $\beta = 2(\delta - 2\alpha)$.

It is parallel canonical iff $\delta = 2\alpha \ (\Rightarrow \alpha \delta > 0)$.

The canonical connection of a 3- (α, δ) -Sasaki manifold has torsion

$$T = \sum_{i=1}^{3} \eta_i \wedge d\eta_i + 8(\delta - \alpha) \eta_{123}$$

and satisfies $\nabla T = 0$.

- 3- α -Sasaki manifolds ($\alpha = \delta$): $T = \sum_i \eta_i \wedge d\eta_i$
- quat. Heisenberg groups ($\delta=0, 2\alpha=\lambda$): $T=\sum_i \eta_i \wedge d\eta_i 4\lambda \eta_{123}$

canonical almost 3-contact metric manifolds hypernormal canonical almost 3-contact metric m. 3- (α, δ) -Sasaki manifolds $\beta = 2(\delta - 2\alpha)$ ₹3-Sasaki manifolds degenerate

The geometry of 3- (α, δ) -Sasaki manifolds

Using the canonical connection ∇ and applying Agricola-Höll criterion:

Theorem

Let $(M, \varphi_i, \xi_i, \eta_i, g)$ be a 3- (α, δ) -Sasaki manifold. Then the metric cone $(\bar{M}, \bar{g}) = (M \times \mathbb{R}^+, a^2 r^2 g + dr^2), \quad a = -\frac{\beta}{2},$

is HKT manifold.

The geometry of 3- (α, δ) -Sasaki manifolds

Using the canonical connection ∇ and applying Agricola-Höll criterion:

Theorem

Let
$$(M, \varphi_i, \xi_i, \eta_i, g)$$
 be a 3- (α, δ) -Sasaki manifold. Then the metric cone $(\bar{M}, \bar{g}) = (M \times \mathbb{R}^+, a^2 r^2 g + dr^2), \quad a = -\frac{\beta}{2},$

is HKT manifold.

Moreover, every 3- (α,δ) -Sasakian manifold admits an underlying quaternionic contact structure, and the canonical connection turns out to be a quaternionic contact connection. In fact, it is qc-Einstein (Ivanov - Minchev - Vassilev, 2016) and this allows to determine the Riemannian Ricci curvature:

Theorem

The Riemannian Ricci curvature of a 3- (α, δ) -Sasaki manifold is

$$\operatorname{Ric}^{g} = 2\alpha (2\delta(n+2) - 3\alpha)g + 2(\alpha - \delta)((2n+3)\alpha - \delta) \sum_{i=1}^{3} \eta_{i} \otimes \eta_{i}$$

The ∇ -Ricci curvature is

$$\operatorname{Ric} = 4\alpha \{\delta(n+2) - 3\alpha\} g + 4\alpha \{\delta(2-n) - 5\alpha\} \sum_{i=1}^{3} \eta_i \otimes \eta_i.$$

The property of being symmetric follows for Ric from $\nabla T = 0$.

Theorem

The Riemannian Ricci curvature of a 3- (α, δ) -Sasaki manifold is

$$\operatorname{Ric}^{g} = 2\alpha \left(2\delta(n+2) - 3\alpha\right)g + 2(\alpha - \delta)\left((2n+3)\alpha - \delta\right)\sum_{i=1}^{3} \eta_{i} \otimes \eta_{i}$$

The ∇ -Ricci curvature is

$$\operatorname{Ric} = 4\alpha \{\delta(n+2) - 3\alpha\} g + 4\alpha \{\delta(2-n) - 5\alpha\} \sum_{i=1}^{3} \eta_i \otimes \eta_i.$$

The property of being symmetric follows for Ric from $\nabla T = 0$.

- M is Riemannian Einstein iff $\alpha = \delta$ or $\delta = (2n+3)\alpha$.
- The manifold is ∇ -Einstein iff $\delta(2-n)=5\alpha$.
- The manifold is both Riemannian Einstein and ∇ -Einstein if and only if $\dim M = 7$ and $\delta = 5\alpha$ (happens for example for 'compatible' nearly parallel G_2 -str., see next).

7-dimensional 3- (α, δ) -Sasaki manifolds

Theorem

Any 7-dimensional 3- (α, δ) -Sasaki manifold admits a a cocalibrated G_2 -structure (Fernandez-Gray type $W_1 \oplus W_3$) given by the 3-form

$$\omega := \sum_{i=1}^{3} \eta_i \wedge \Phi_i^{\mathcal{H}} + \eta_{123}.$$

Its characteristic connection ∇ coincides with the canonical connection.

This G_2 -structure defines a unique canonical spinor field ψ_0 such that

$$\nabla \psi_0 = 0, \quad \omega \cdot \psi_0 = -7\psi_0, \quad |\psi_0| = 1.$$

Theorem

1 The canonical spinor field ψ_0 is a generalized Killing spinor:

$$\nabla_X^g \psi_0 = -\frac{3\alpha}{2} X \cdot \psi_0 \ \text{ for } X \in \mathcal{H}, \quad \nabla_Y^g \psi_0 = \frac{2\alpha - \delta}{2} Y \cdot \psi_0 \ \text{ for } Y \in \mathcal{V}.$$

The two generalized Killing numbers coincide iff $\delta=5\alpha$, corresponding to a nearly parallel G_2 -structure. (Gray-Fernandez type W_1)

 $[\delta=5lpha$ is the only case where M is Einstein and abla-Einstein].

1 The Clifford products $\psi_i := \xi_i \cdot \psi_0$, i = 1, 2, 3, are generalized Killing spinors:

$$\begin{split} \nabla^g_{\xi_i} \psi_i &= \frac{2\alpha - \delta}{2} \, \xi_i \cdot \psi_i, \quad \nabla^g_{\xi_j} \psi_i = -\frac{3\delta - 2\alpha}{2} \, \xi_j \cdot \psi_i \ (i \neq j), \\ \nabla^g_X \psi_i &= \frac{\alpha}{2} \, X \cdot \psi_i \quad \text{for } X \in \mathcal{H}. \end{split}$$

Any two of the generalized Killing numbers coincide iff $\alpha = \delta$, i. e. if M^7 is 3- α -Sasakian.

Homogeneous 3-Sasakian manifolds

Theorem (Boyer, Galicki, Mann, 1994)

Let $(M, \varphi_i, \xi_i, \eta_i, g)$ be a homogeneous 3-Sasakian manifold. Then M is one of the following homogeneous spaces:

$$\frac{\operatorname{Sp}(n+1)}{\operatorname{Sp}(n)}, \quad \frac{\operatorname{Sp}(n+1)}{\operatorname{Sp}(n) \times \mathbb{Z}_2}, \quad \frac{\operatorname{SU}(m+2)}{S(\operatorname{U}(m) \times \operatorname{U}(1))}, \quad \frac{\operatorname{SO}(k+4)}{\operatorname{SO}(k) \times \operatorname{Sp}(1)}, \\ \frac{\operatorname{G}_2}{\operatorname{Sp}(1)}, \quad \frac{\operatorname{F}_4}{\operatorname{Sp}(3)}, \quad \frac{\operatorname{E}_6}{\operatorname{SU}(6)}, \quad \frac{\operatorname{E}_7}{\operatorname{Spin}(12)}, \quad \frac{\operatorname{E}_8}{\operatorname{E}_7}.$$

Here $n \geq 0$, $m \geq 1$ and $k \geq 3$.

- ullet They are all simply connected except for $\mathbb{R}P^{4n+3}\simeq rac{\mathrm{Sp}(n+1)}{\mathrm{Sp}(n) imes\mathbb{Z}_2}$
- 1-1 correspondence between simply connected 3-Sasakian homogeneous manifolds and compact simple Lie algebras

(Draper, Ortega, Palomo, 2018)

Definition

A 3-Sasakian data is a triple (G, G_0, H) of Lie groups such that

- G is a compact, simple Lie Group
- $H \subset G_0 \subset G$ connected Lie subgroups

(Draper, Ortega, Palomo, 2018)

Definition

A 3-Sasakian data is a triple (G, G_0, H) of Lie groups such that

- G is a compact, simple Lie Group
- $H \subset G_0 \subset G$ connected Lie subgroups

and the Lie algebras $\mathfrak{h} \subset \mathfrak{g}_0 \subset \mathfrak{g}$ satisfy:

• $\mathfrak{g}_0 = \mathfrak{h} \oplus \mathfrak{sp}(1)$ with $\mathfrak{sp}(1)$ and \mathfrak{h} commuting subalgebras,

(Draper, Ortega, Palomo, 2018)

Definition

A 3-Sasakian data is a triple (G, G_0, H) of Lie groups such that

- G is a compact, simple Lie Group
- $H \subset G_0 \subset G$ connected Lie subgroups

- $\mathfrak{g}_0 = \mathfrak{h} \oplus \mathfrak{sp}(1)$ with $\mathfrak{sp}(1)$ and \mathfrak{h} commuting subalgebras,
- ullet $(\mathfrak{g},\mathfrak{g}_0)$ form a symmetric pair, $\mathfrak{g}=\mathfrak{g}_0\oplus\mathfrak{g}_1$,

(Draper, Ortega, Palomo, 2018)

Definition

A 3-Sasakian data is a triple (G, G_0, H) of Lie groups such that

- G is a compact, simple Lie Group
- $H \subset G_0 \subset G$ connected Lie subgroups

- $\mathfrak{g}_0 = \mathfrak{h} \oplus \mathfrak{sp}(1)$ with $\mathfrak{sp}(1)$ and \mathfrak{h} commuting subalgebras,
- ullet $(\mathfrak{g},\mathfrak{g}_0)$ form a symmetric pair, $\mathfrak{g}=\mathfrak{g}_0\oplus\mathfrak{g}_1$,
- the complexification $\mathfrak{g}_1^{\mathbb{C}}=\mathbb{C}^2\otimes_{\mathbb{C}} W$ for some $\mathfrak{h}^{\mathbb{C}}$ -module of $\dim_{\mathbb{C}} W=2n$,

(Draper, Ortega, Palomo, 2018)

Definition

A 3-Sasakian data is a triple (G, G_0, H) of Lie groups such that

- G is a compact, simple Lie Group
- $H \subset G_0 \subset G$ connected Lie subgroups

- $\mathfrak{g}_0 = \mathfrak{h} \oplus \mathfrak{sp}(1)$ with $\mathfrak{sp}(1)$ and \mathfrak{h} commuting subalgebras,
- ullet $(\mathfrak{g},\mathfrak{g}_0)$ form a symmetric pair, $\mathfrak{g}=\mathfrak{g}_0\oplus\mathfrak{g}_1$,
- the complexification $\mathfrak{g}_1^{\mathbb{C}}=\mathbb{C}^2\otimes_{\mathbb{C}} W$ for some $\mathfrak{h}^{\mathbb{C}}$ -module of $\dim_{\mathbb{C}} W=2n$,
- $\mathfrak{h}^{\mathbb{C}}, \mathfrak{sp}(1)^{\mathbb{C}} \subset \mathfrak{g}_0^{\mathbb{C}}$ act on $\mathfrak{g}_1^{\mathbb{C}}$ by their action on W and \mathbb{C}^2 .

(Draper, Ortega, Palomo, 2018)

Definition

A 3-Sasakian data is a triple (G, G_0, H) of Lie groups such that

- G is a compact, simple Lie Group
- $H \subset G_0 \subset G$ connected Lie subgroups

and the Lie algebras $\mathfrak{h} \subset \mathfrak{g}_0 \subset \mathfrak{g}$ satisfy:

- $\mathfrak{g}_0 = \mathfrak{h} \oplus \mathfrak{sp}(1)$ with $\mathfrak{sp}(1)$ and \mathfrak{h} commuting subalgebras,
- ullet $(\mathfrak{g},\mathfrak{g}_0)$ form a symmetric pair, $\mathfrak{g}=\mathfrak{g}_0\oplus\mathfrak{g}_1$,
- the complexification $\mathfrak{g}_1^{\mathbb{C}}=\mathbb{C}^2\otimes_{\mathbb{C}}W$ for some $\mathfrak{h}^{\mathbb{C}}$ -module of $\dim_{\mathbb{C}}W=2n$,
- $\mathfrak{h}^{\mathbb{C}}, \mathfrak{sp}(1)^{\mathbb{C}} \subset \mathfrak{g}_0^{\mathbb{C}}$ act on $\mathfrak{g}_1^{\mathbb{C}}$ by their action on W and \mathbb{C}^2 .

Remark In total the Lie algebra decomposes as

$$\mathfrak{g}=\overbrace{\mathfrak{h}\oplus\mathfrak{sp}(1)\oplus\mathfrak{g}_1}^{\mathfrak{g}_0}$$
 (\mathfrak{m} is a reductive complement for $M=G/H$)

Homogeneous 3-Sasakian model

Theorem (Draper, Ortega, Palomo, 2018)

Let (G, G_0, H) be 3-Sasakian data. On M = G/H consider the G-invariant structure defined by the $\mathrm{Ad}(H)$ -invariant tensors on \mathfrak{m} :

• the inner product g

$$g\big|_{\mathfrak{sp}(1)} = \frac{-\kappa}{4(n+2)}, \qquad g\big|_{\mathfrak{g}_1} = \frac{-\kappa}{8(n+2)}, \qquad g\big|_{\mathfrak{sp}(1)\times\mathfrak{g}_1} = 0$$

 κ the Killing form on G.

- $\xi_i = \sigma_i$, i = 1, 2, 3, σ_i standard basis of $\mathfrak{sp}(1) = \mathcal{V} \subset \mathfrak{g}_0$, $\eta_i = g(\xi_i, \cdot)$
- the endomorphisms φ_i as

$$\varphi_i|_{\mathfrak{sp}(1)} = \frac{1}{2} \operatorname{ad}(\xi_i), \qquad \varphi_i|_{\mathfrak{g}_1} = \operatorname{ad}(\xi_i).$$

Then $(M, \varphi_i, \xi_i, \eta_i, g)$ defines a homogeneous 3-Sasakian manifold. Conversely every homogeneous 3-Sasakian manifold $M \neq \mathbb{R}P^{4n+3}$ is obtained by this construction.

Remark: M fibers over the quaternion Kähler symmetric space G/G_0 .

Homogeneous positive 3- (α, δ) -Sasakian model

Idea: Use $\mathcal{H}\text{-homothetic}$ deformation to obtain $3\text{-}(\alpha,\delta)\text{-Sasakian}$ mnfds for $\alpha\delta>0$

Homogeneous positive 3- (α, δ) -Sasakian model

Idea: Use \mathcal{H} -homothetic deformation to obtain 3- (α,δ) -Sasakian mnfds for $\alpha\delta>0$

Theorem

Let (G, G_0, H) be 3-Sasakian data, $\alpha \delta > 0$. On M = G/H consider the G-invariant structure by the $\mathrm{Ad}(H)$ -invariant tensors on \mathfrak{m} :

$$\begin{split} g\big|_{\mathfrak{sp}(1)} &= \frac{-\kappa}{4\delta^2(n+2)}, \qquad g\big|_{\mathfrak{g}_1} = \frac{-\kappa}{8\alpha\delta(n+2)}, \qquad g\big|_{\mathfrak{sp}(1)\times\mathfrak{g}_1} = 0 \\ &\qquad \qquad \xi_i = \delta\sigma_i, \qquad \eta_i = g(\xi_i, \cdot) \\ &\qquad \qquad \varphi_i\big|_{\mathfrak{sp}(1)} = \frac{1}{2\delta}\operatorname{ad}(\xi_i), \qquad \varphi_i\big|_{\mathfrak{g}_1} = \frac{1}{\delta}\operatorname{ad}(\xi_i). \end{split}$$

Then $(M, \varphi_i, \xi_i, \eta_i, g)$ defines a homogeneous 3- (α, δ) -Sasakian mnfd. Conversely every homogeneous 3- (α, δ) -Sasakian manifold $M \neq \mathbb{R}P^{4n+3}$ with $\alpha\delta > 0$ is obtained by this construction.

Remark: (G/H, g) is naturally reductive $\Leftrightarrow \delta = 2\alpha \Leftrightarrow \text{parallel } 3\text{-}(\alpha, \delta)$.

Generalized setup

Definition

A generalized 3-Sasakian data is a triple (G,G_0,H) of Lie groups such that

- G is a real simple Lie Group
- $H \subset G_0 \subset G$ connected Lie subgroups

- $\mathfrak{g}_0 = \mathfrak{h} \oplus \mathfrak{sp}(1)$ with $\mathfrak{sp}(1)$ and \mathfrak{h} commuting subalgebras,
- ullet $(\mathfrak{g},\mathfrak{g}_0)$ form a symmetric pair, $\mathfrak{g}=\mathfrak{g}_0\oplus\mathfrak{g}_1$,
- the complexification $\mathfrak{g}_1^{\mathbb{C}}=\mathbb{C}^2\otimes_{\mathbb{C}} W$ for some $\mathfrak{h}^{\mathbb{C}}$ -module of $\dim_{\mathbb{C}} W=2n$,
- $\mathfrak{h}^{\mathbb{C}}, \mathfrak{sp}(1)^{\mathbb{C}} \subset \mathfrak{g}_0^{\mathbb{C}}$ act on $\mathfrak{g}_1^{\mathbb{C}}$ by their action on W and \mathbb{C}^2 .

Generalized setup

Definition

A generalized 3-Sasakian data is a triple (G,G_0,H) of Lie groups such that

- G is a real simple Lie Group
- $H \subset G_0 \subset G$ connected Lie subgroups

and the Lie algebras $\mathfrak{h} \subset \mathfrak{g}_0 \subset \mathfrak{g}$ satisfy:

- $\mathfrak{g}_0 = \mathfrak{h} \oplus \mathfrak{sp}(1)$ with $\mathfrak{sp}(1)$ and \mathfrak{h} commuting subalgebras,
- ullet $(\mathfrak{g},\mathfrak{g}_0)$ form a symmetric pair, $\mathfrak{g}=\mathfrak{g}_0\oplus\mathfrak{g}_1$,
- the complexification $\mathfrak{g}_1^{\mathbb{C}}=\mathbb{C}^2\otimes_{\mathbb{C}} W$ for some $\mathfrak{h}^{\mathbb{C}}$ -module of $\dim_{\mathbb{C}} W=2n$,
- $\mathfrak{h}^{\mathbb{C}}, \mathfrak{sp}(1)^{\mathbb{C}} \subset \mathfrak{g}_0^{\mathbb{C}}$ act on $\mathfrak{g}_1^{\mathbb{C}}$ by their action on W and \mathbb{C}^2 .

If $(\mathfrak{g},\mathfrak{g}_0)$ is a compact symmetric pair such that (G,G_0,H) is 3-Sasakian data, then (G^*,G_0,H) is generalized 3-Sasakian data, where $(\mathfrak{g}^*,\mathfrak{g}_0)$ is the dual non-compact symmetric pair.

Negative homogeneous 3- (α, δ) -Sasakian manifolds

Theorem

Let (G^*,G_0,H) be non-compact generalized 3-Sasakian data, $\alpha\delta<0$. On $M=G^*/H$ consider the G^* -invariant structure defined by the $\mathrm{Ad}(H)$ -invariant tensors on $\mathfrak m$

$$g\big|_{\mathfrak{sp}(1)} = \frac{-\kappa}{4\delta^2(n+2)}, \qquad g\big|_{\mathfrak{g}_1} = \frac{-\kappa}{8\alpha\delta(n+2)}, \qquad g\big|_{\mathfrak{sp}(1)\times\mathfrak{g}_1} = 0,$$

$$\xi_i = \delta\sigma_i, \qquad \eta_i = g(\xi_i, \cdot),$$

$$\varphi_i\big|_{\mathfrak{sp}(1)} = \frac{1}{2\delta}\operatorname{ad}(\xi_i), \qquad \varphi_i\big|_{\mathfrak{g}_1} = \frac{1}{\delta}\operatorname{ad}(\xi_i),$$

 κ the Killing form on G^* , σ_i standard basis $\mathfrak{sp}(1) = \mathcal{V} \subset \mathfrak{g}_0$.

Then $(M, g, \xi_i, \eta_i, \varphi_i)$ defines a homogeneous 3- (α, δ) -Sasakian manifold.

Question: Does this model cover all homogenous negative 3-(α, δ)-Sasaki manifolds?

In total we obtain homogeneous 3-(α,δ)-Sasakian structures on the following list of homogeneous spaces (G/H compact, G^*/H non-compact):

G	G^*	H	G_0	dim
$\operatorname{Sp}(n+1)$	$\operatorname{Sp}(n,1)$	$\operatorname{Sp}(n)$	$\operatorname{Sp}(n)\operatorname{Sp}(1)$	4n+3
SU(n+2)	SU(n,2)	$S(\mathrm{U}(n) \times \mathrm{U}(1))$	$S(\mathrm{U}(n)\mathrm{U}(2))$	4n+3
SO(n+4)	SO(n,4)	$SO(n) \times Sp(1)$	SO(n)SO(4)	4n+3
G_2	G_2^2	$\operatorname{Sp}(1)$	SO(4)	11 .
F_4	F_4^{-20}	Sp(3)	$\operatorname{Sp}(3)\operatorname{Sp}(1)$	31
E_{6}	$ ilde{\mathrm{E}}_{6}^{2}$	SU(6)	SU(6)Sp(1)	43
E_7	E_7^{-5}	Spin(12)	Spin(12)Sp(1)	67
E_8	E_8^{-24}	E_{7}	$\mathrm{E}_{7}\mathrm{Sp}(1)$	115

Remark: $\mathbb{R}P^{4n+3} = \frac{\operatorname{Sp}(n+1)}{\operatorname{Sp}(n) \times \mathbb{Z}_2}$ and non compact dual $\frac{\operatorname{Sp}(n,1)}{\operatorname{Sp}(n) \times \mathbb{Z}_2}$ also admit 3- (α, δ) -Sasaki structures, as the quotient of $S^{4n+3} = \frac{\operatorname{Sp}(n+1)}{\operatorname{Sp}(n)}$, resp. $\frac{\operatorname{Sp}(n,1)}{\operatorname{Sp}(n)}$ by \mathbb{Z}_2 inside the fiber.

Definiteness of curvature operators

Consider the Riemannian curvature as a symmetric operator

$$\mathcal{R}^g: \Lambda^2 M \to \Lambda^2 M \qquad \langle \mathcal{R}^g(X \wedge Y), Z \wedge V \rangle = -g(R^g(X, Y)Z, V).$$

Definition

A Riemannian manifold (M,g) is said to have strongly positive curvature if there exists a 4-form ω such that $\mathcal{R}^g + \omega$ is positive-definite at every point $x \in M$ (Thorpe, 1971).

For every 2-plane σ , being $\langle \omega(\sigma), \sigma \rangle = 0$, one has

$$sec(\sigma) = \langle \mathcal{R}^g(\sigma), \sigma \rangle = \langle (\mathcal{R}^g + \omega)(\sigma), \sigma \rangle.$$

Then,

 $\mathcal{R}^g>0\Longrightarrow$ strongly positive curvature \Longrightarrow positive sectional curvature

 $\mathcal{R}^g \geq 0 \Longrightarrow$ strongly non-negative curvature \Longrightarrow non-negative sec. curv.

On a 3- (α, δ) -Sasakian manifold the symmetric operators defined by the Riemannian curvature and the curvature of the canonical connection:

$$\mathcal{R}^g: \Lambda^2 M \to \Lambda^2 M \qquad \mathcal{R}: \Lambda^2 M \to \Lambda^2 M$$

are related by

$$\mathcal{R}^g - \frac{1}{4}\sigma_T = \mathcal{R} + \frac{1}{4}\mathcal{G}_T$$

with

$$\langle \mathcal{G}_T(X \wedge Y), Z \wedge V \rangle := g(T(X, Y), T(Z, V)),$$

 $\langle \sigma_T(X \wedge Y), Z \wedge V \rangle := \frac{1}{2} dT(X, Y, Z, V).$

(M,g) is strongly non-negative with 4-form $-\frac{1}{4}\sigma_T$ if and only if

$$\mathcal{R} + \frac{1}{4}\mathcal{G}_T \ge 0.$$

Being $\mathcal{G}_T \geq 0$, if $\mathcal{R} \geq 0$ we directly have strong non-negativity.

Theorem

Let M be a homogeneous 3- (α, δ) -Sasakian manifold obtained from a generalized 3-Sasakian data.

- If $\alpha \delta < 0$ then $\mathcal{R} \leq 0$.
- If $\alpha \delta > 0$ then

$$\mathcal{R} \geq 0$$
 if and only if $\alpha\beta \geq 0$

•

Then, on a positive homogeneous 3- (α, δ) -Sasaki manifold with $\alpha\beta \geq 0$:

$$\mathcal{R}^g - \frac{1}{4}\sigma_T = \mathcal{R} + \frac{1}{4}\mathcal{G}_T \ge 0.$$

The converse also holds, i.e.

Theorem

A positive homogeneous 3- (α, δ) -Sasaki manifold is strongly non-negative with 4-form $-\frac{1}{4}\sigma_T$ if and only if $\alpha\beta \geq 0$.

Strong positivity is much more restrictive than strong non-negativity.

Strong positivity implies strict positive sectional curvature.

Homogeneous manifolds with strictly positive sectional curvature have been classified (Wallach 1972, Bérard Bergery 1976).

Only the 7-dimensional Aloff-Wallach-space $W^{1,1}$, the spheres S^{4n+3} and real projective spaces $\mathbb{R}P^{4n+3}$ admit homogeneous 3- (α,δ) -Sasaki structures.

Theorem

The 3- (α, δ) -Sasakian spaces

- $W^{1,1} = \mathrm{SU}(3)/S^1$ with 4-form $-(\frac{1}{4} + \varepsilon)\sigma_T$ for small $\varepsilon > 0$,
- S^{4n+3} , $\mathbb{R}P^{4n+3}$, $n \ge 1$, with 4-form $\frac{\delta}{8\alpha}\sigma_T|_{\Lambda^4\mathcal{H}} (\frac{1}{4} + \varepsilon)\sigma_T$ for small $\varepsilon > 0$

are strongly positive if and only if $\alpha\beta > 0$.

Short bibliography

- I. Agricola, *The Srní lectures on non-integrable geometries with torsion*, Arch. Math.(Brno) **42** (2006), suppl., 5–84.
- I. Agricola, G. Dileo, Generalizations of 3-Sasakian manifolds and skew torsion, Adv. Geom. (2019).
- I. Agricola, G. Dileo, L. Stecker, *Curvature and homogeneity properties of non-degenerate* 3- (α, δ) *Sasaki manifolds*, in preparation.
- I. Agricola, T. Friedrich, 3-Sasakian manifolds in dimension seven, their spinors and G_2 -structures, J. Geom. Phys. (2010).
- I. Agricola, J. Höll, Cones of G manifolds and Killing spinors with skew torsion, Ann. Mat. Pura Appl. (2015).
- C.P. Boyer, K. Galicki, B. M. Mann, *The geometry and topology of 3-Sasakian manifolds* J. Reine Angew. Math. (1994).
- C. Draper, M. Ortega, F.J. Palomo, *Affine Connections on 3-Sasakian Homogeneous Manifolds*, Math. Z. (2019).
- T. Friedrich, S. Ivanov, *Parallel spinors and connections with skew-symmetric torsion in string theory*, Asian J. Math. (2002).
- S. Ivanov, I. Minchev, D. Vassilev, *Quaternionic contact Einstein structures and the quaternionic contact Yamabe problem*, Mem. AMS (2014).
- T. Kashiwada, On a contact 3-structure, Math. Z. (2001).

