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The normalized total scalar curvature functional

A Riemannian manifold (Mn, g) is Einstein if the Ricci curvature Ricg is
constant, i.e.

Ricg = Λg (1)

for some constant Λ, and Λ is called Einstein constant.

Let Mn be an n-dimensional compact manifold.

M := {Riemannian metrics g on Mn}.

The normalized total scalar curvature functional is defined as

S̃ :M→ R, S̃(g) =
1

V (g)
n−2
n

∫
M

sgdvolg , (2)

where sg denotes the scalar curvature of g .

The functional S̃ is diffeomorphism invariant and scaling invariant.

From now on, assume n ≥ 3.
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The first variation formula

Let g(t) for t ∈ (−τ, τ) be a smooth family of metrics on Mn, g(0) = g , and
d
dt

g(t)|t=0 = h ∈ C∞(M,T ∗M � T ∗M).

S̃
′
g ·h :=

d

dt
S̃(g(t))|t=0 =

1

V (g)
n−2
n

∫
M

〈−Ricg +(
sg
2

+
2− n

2n
sg )g , h〉dvolg , (3)

where sg = 1
V (g)

∫
M

sgdvolg is the average of scaler curvature.

Theorefore,

g is a critical point of S̃⇔ Ricg = (
sg
2

+
2− n

2n
sg )g

⇔ sg is constant and g is Einstein

(The second Bianchi identity, and n ≥ 3.)
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The second variation formula

At a such Einstein metric g ,

S̃
′′
g (h, h) :=

d2

dt2
S̃(g(t))|t=0 =

1

V (g)
n−2
n

∫
M

〈Pgh, h〉dvolg , (4)

where

Pgh =− 1

2
∇∗∇h + R̊h + δ∗g (δgh) +

1

2
Hessg (trgh)

+ [−1

2
(∆g (trgh)) +

1

2
δg (δgh)− sg

2n
(trgh)]g

− (2− n)sg
2n2

(trgh)g ,

(5)

(trgh) = 1
V (g)

∫
M

(trgh)dvolg , and (R̊h)ij = Rikjlhkl .
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A decomposition of symmetric 2-tensors on Einstein manifolds

Let (Mn, g) be a compact Einstein manifold other than standard spheres. Then

C∞(M,T ∗M � T ∗M) = Imδ∗g ⊕ C∞(M) · g ⊕ (ker trg ∩ ker δg ). (6)

This decomposition is orthogonal with respect to 〈Pgh, h̃〉L2 .

Imδ∗g corresponds to diffeomorphisms. Thus, 〈Pgh, h̃〉L2 = 0, for h ∈ Imδ∗g
and any h̃.

Moreover, 〈Pg (fg), fg〉L2 = n−2
2

∫
M

(−(n − 1)∆g f − sg f ) · fdvolg≥ 0, for
any f ∈ C∞(M).

An Einstein metric is always a saddle point of the normalized total scalar
curvature functional.
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Definition of linear stability of Einstein metrics

In the direction orthogonal to diffeomorphism and conformal changes, i.e.
h ∈ ker trg ∩ ker δg ,

S̃
′′
g (h, h) =

−1

2V (g)
n−2
n

∫
M

〈∇∗∇h − 2R̊h, h〉dvolg . (7)

Einstein operator: ∇∗∇− 2R̊ = ∆L − 2Λ.

Definition: A (compact) Einstein metric (Mn, g) is S̃-linearly stable, if

〈∇∗∇h − 2R̊h, h〉L2 ≥ 0 (8)

for all TT-tensors h, i.e. symmetric 2-tensor h satisfying trgh = 0 and δgh = 0,

and otherwise, S̃-linearly unstable.
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Examples of S̃-linearly stable Einstein metrics

Einstein manifolds with negative sectional curvature (N. Koiso, 1978).

Many compact irreducible symmetric spaces, e.g. Sn,CPn,HPn, and all
compact simple Lie groups except Sp(n), n ≥ 2 and SU(n), n ≥ 3 (N.
Koiso, 1980).

Compact manifolds with non-zero parallel spinors (X. Dai, X. Wang, and
G. Wei, 2005).Therefore, so far all known examples of compact Ricci flat
manifold are stable.

Compact Einstein manifolds with non-positive scalar curvature and
non-zero parallel spinc spinors are stable (X. Dai, X. Wang, and G. Wei,
2007). In particular, compact Kähler-Einstein manifolds with non-positive
scalar curvature are stable.

Complete Riemannian manifolds with imaginary Killing spinors (K.
Kröncke, 2017, W., 2017).
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Examples of S̃-linearly unstable Einstein metrics

Sp(n), Sp(n)/U(n), n ≥ 2 (N. Koiso, 1980).

Jensen spheres metric on S4q+3 (G. Jensen, 1973).

Any compact Kähler-Einstein manifold M of positive scalar curvature with
dim H1,1(M) ≥ 2 (i.e. b2 ≥ 2) is unstable (H. Cao, R. Hamilton, and T.
Ilmanen, 2004).

Warped product Einstein manifolds with dimension n ≤ 6 are unstable.
(W. Batat, S. Hall, T. Murphy, 2017).
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Some other variational characterizations of Einstein metrics

Einstein metrics with positive Ricci curvature are certain critical points of
Perelman’s ν-entropy.

The second variation formula of ν-entropy at Einstein metrics for
h ∈ ker trg ∩ ker δg is the same as the second variation formula of the
normalized total scalar curvature (up to a positive constant factor).

However, unlike the case of the S̃-functional, the second variation is no longer
always positive on conformal change directions. Actually, Einstein metrics could
be local maximum points of the ν-entropy.
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ν-(linear) stability

Definition: A closed Einstein manifold (M, g) with Einstein constant Λ > 0 is

(1) ν-stable if g is a local maximizer of the ν-entropy;

(2) ν-linearly stable if the second variation of the ν-entropy is negative
semi-definite on C∞(M)g ⊕ (ker trg ∩ ker δg ).

The corresponding notions of instability are given by negation.

By H. Cao-C. He’s work,

ν-linear stability⇐⇒

{
〈∇∗∇h − 2R̊h, h〉L2 ≥ 0, ∀ h ∈ ker trg ∩ ker δg ,

λ1(M, g) ≥ 2Λ,

where λ1(M, g) is the first non-zero eigenvalue of the Laplace operator on
(M, g).
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(1) ν-stable if g is a local maximizer of the ν-entropy;

(2) ν-linearly stable if the second variation of the ν-entropy is negative
semi-definite on C∞(M)g ⊕ (ker trg ∩ ker δg ).

The corresponding notions of instability are given by negation.
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Relation with dynamic stability

By the work of K. Kröncke (2015), ν-stability is equivalent to dynamical
stability along normalized Ricci flow.

A compact Einstein manifold (M, g) is called dynamically unstable if there
exists a non-trivial normalized Ricci flow defined on (−∞, 0] which converges
modulo diffeomorphism to g as t → −∞.

S̃-linearly unstable =⇒ ν-linearly unstable =⇒ ν-unstable ⇐⇒ dynamically
unstable.

Changliang Wang The linear instability of some Einstein metrics



Relation with dynamic stability
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Killing spinors

A spinor σ is called a Killing spinor with the Killing constant µ 6= 0, if

∇S
Xσ = µX · σ, (9)

for all vector fields X on M.

If the constant µ = 0 in (9), then σ is called a parallel spinor.

If a manifold (Mn, g) admits a Killing spinor σ with Killing constant µ, then

Ricg = 4µ2(n − 1)g , (10)

i.e. g is an Einstein metric with scalar curvature 4n(n− 1)µ2. This implies that
µ can only be real or purely imaginary, since scalar curvature is real.

A non-zero Killing spinor is real (resp. imaginary) if its Killing constant is real
(resp. purely imaginary).

Professor Thomas Friedrich initiated the mathematical investigation of Killing
spinors in 1980.
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Manifolds with real Killing spinors

By the works of T. Friedrich (1981), O. Hijazi (1986), T. Friedrich-I. Kath
(1989), R. Grunewald (1990), C. Bär (1993), a complete simply-connected
Riemannian manifold of dimension n with a Real Killing spinor and Einstein
constant n − 1 is isometric one of the following:

(1) round sphere Sn, if n is even and n 6= 6;

(2) strictly nearly Kähler manifold, if n = 6;

(3) Sasaki-Einstein manifold, if n is odd and n 6= 7;

(4) nearly parallel G2 manifold (including Sasaki-Einstein and 3-Sasaki), if
n = 7.
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Homogeneous nearly Kähler manifolds

Proposition (W. – Wang, 2018)

The only ν-stable simply connected homogeneous strictly nearly Kähler
6-manifold is S6 with the round metric.

By the work of J.-B. Butruille (2005), a simply connected homogeneous strictly
nearly Kähler 6-manifold is one of the following:

(1) S6 = G2/SU(3),

(2) (SU(2)× SU(2)× SU(2))/∆SU(2),

(3) CP3 = Sp(2)/(Sp(1)×U(1)),

(4) SU(3)/T 2,

each equipped with a unique invariant nearly Kähler structure.
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Instability of nearly Kähler 6-manifoolds

Theorem (Semmelmann – W. – Wang, 2019)

A complete strict nearly Kähler 6-manifold with either 2nd or 3rd Betti number
nonzero is S̃-linearly unstable, and therefore ν-linearly unstable.

Main ingredients in the proof:

M. Verbitsky’s Hodge decomposition of Harmonic forms on nearly Kähler
6-manifolds (also proved by L. Foscolo in a different way).

A. Moroianu and U. Semmelmann’s work about the standard Lapace
operator on nearly Kähler manifolds.

Corollary

If a complete simply connected strict nearly Kähler manifolds is S̃-linearly
stable, then it is a rational homology sphere. In particular, if H2(M,Z) has no
torsion, then it is diffeomorphic to S6.
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Nearly parallel G2 manifolds

Classification by Friedrich-Kath-Moroianu-Semmelmann (1997):
A compact, simply connected, homogeneous nearly parallel G2 manifold with
only 1 linearly independent Killing spinor is isometric to one of the followings

(1) S7 with the Jensen’s metric (S̃-linearly unstable);

(2) Aloff-Wallach spaces Nk,l = SU(3)/Uk,l , where k, l are relatively prime
integers with (k, l) 6= (1, 1) and Uk,l is the circle
diag(e2πikθ, e2πilθ, e−2πi(k+l)θ) ∈ SU(3), with invariant Einstein metrics;

(3) the isotropy irreducible space Sp(2)/SU(2), where the embedding of SU(2)
is via the irreducible 4-dimensional symplectic representation.
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Instability of homogeneous Einstein metrics on Aloff-Wallach spaces Nk,l

By the works of M. Wang (1982), Castellani-Romans (1984), Page-Pope
(1984), Kawalski-Vlasek (1993), and Nikonorov (2004), each of Nk,l admit two
SU(3)-invariant Einstein metrics, up to isometry.

Theorem (W. – Wang, 2018)

The invariant Einstein metrics on Nk,l are all S̃-linearly unstable, and therefore
ν-linearly unstable.
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Sasaki manifolds

Definition 1 of Sasaki Manifolds: (Mn, g) is a Sasaki manifold if the cone
(R+ ×Mn, dr 2 + r 2g) is Kähler, where R+ = (0,+∞), and r is coordinate on
R+.

Definition 2 of Sasaki Manifolds: (Mn, g) is a Sasaki manifold if there exists
a Killing vector filed ξ of unit length on Mn so that the Riemann curvature
satisfies the condition

RXξY = −g(ξ,Y )X + g(X ,Y )ξ, (11)

for any pair of vector fields X and Y on Mn. Moreover, (Mn, g) is a regular
Sasaki manifold if ξ is a regular vector field.

From (11), one can easily see that on a Sasaki-Einstein manifold (Mn, g) of
dimension n

Ricg = (n − 1)g . (12)
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Regular Sasaki-Einstein manifolds

Let (B2p,G , J) be a Kähler-Einstein manifold of real dimension 2p, with the
Kähler form Ω = G(·, J·), and RicG = (2p + 2)G .

Then let π : M2p+1 → B2p be a principal S1-bundle with a connection η with
the curvature form dη = 2π∗Ω.

Let ξ be a vertical vector field on M2p+1, generated by S1-action, such that
η(ξ) = 1.

We define a Riemannian metric on M2p+1 as

g(X ,Y ) = G(π∗X , π∗Y ) + η(X )η(Y ), (13)

for vector field X and Y on M2p+1.

Then (M2p+1, g , ξ) is a regular Sasaki-Einstein manifold.
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Einstein operator on regular Sasaki-Einstein manifolds

Proposition (W., 2016)∫
M

〈(∇g )∗∇g h̃ − 2R̊g h̃, h̃〉dvolg

=

∫
B

(〈(∇G )∗∇Gh − 2R̊Gh, h〉+ 4〈h, h〉+ 4〈h ◦ J, h〉)dvolG ,

(14)

for any h ∈ C∞(B, S2(B)), where h̃ = π∗h ∈ C∞(M, S2(M)).

Corollary

The regular Sasaki-Einstein manifold (M2p+1, g) is unstable, if one of the
following conditions holds:

(1) there exists a traceless transverse symmetric 2-tensor h on base manifold
B2p such that

∫
B
〈(∇G )∗∇Gh − 2R̊Gh, h〉dvolG < −8

∫
B
〈h, h〉dvolG ;

(2) the base Kähler-Einstein manifold (B2p,G , J) has dimH1,1(B) ≥ 2.
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Instability of regular Sasaki-Einstein manifolds with Hermitian symmetric
space bases

Theorem (W. – Wang, 2018)

The following simply connected regular Sasaki Einstein manifold are ν-linearly
unstable from conformal variations:

(1) SO(p + 2)/SO(p), p ≥ 3, circle bundle over the complex quadric
SO(p + 2)/(SO(p)× SO(2));

(2) E6/Spin(10), and E7/E6, which are respectively circle bundles over the
hermitian symmetric spaces E6/(Spin(10 ·U(1)) and E7/(E6 ·U(1));

(3) SU(p + 2)/(SU(p)× SU(2)), p ≥ 2, a circle bundle over the complex
Grassmannian SU(p + 2)/S(U(p)×U(2)).

Moreover, the Stiefel manifolds in (a) above are also S̃-linearly unstable, and
for k ≥ 4, Sp(k)/SU(k), which are circle bundles over Sp(k)/U(k), are

S̃-linearly unstable, and so ν-linearly unstable.
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THANK YOU!
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