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G-gradients

Assume E is a vector bundle over a manifold M.
Assume that ∇ is a covariant derivative in E , i.e.,

C∞(E)
∇−→ C∞(T ∗M ⊗ E)

Assume G is a Lie group acting both on T ∗M and E (such a group is always
strictly associated to the geometric structure considered on M).
Split both the origin bundle E and the target bundle F = T ∗M ⊗ E onto direct
sums of G-irreducible invariant subbundles.
The restriction of ∇ to any one of such subbundles of E composed with the
projection onto any one of F is just a G-gradient.
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V1 W1

⊕ ⊕
...

...

⊕ ↘ ↗ ⊕

Vµ → E
∇−→ F → Wν

⊕ ↗ ↘ ⊕
...

...

⊕ ⊕
Vr Ws

So, for any µ, ν the first order differential operator

∇µν = Pµν = πν ◦ ∇ ◦ jµ : C∞ (Vµ) −→ C∞ (Wν)

is a G-gradient.
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The Stein-Weiss gradients

Here, we will be mainly interested in SO(n)-gradients, i.e., in the case
G = SO(n).
SO(n)-gradients were introduced first in

E. Stein, G. Weiss, Generalization of the Cauchy-Riemann equations and
representations of the rotation group, Amer. J. Math. 90 (1968) 163–196.

Many natural first order linear differential operators in geometry are either
gradients or their compositions. For example, the exterior and interior
derivatives d and δ, respectively, the Cauchy-Riemann operator ∂. The classical
Dirac operator on exterior forms d + δ is their sum.
Gradients depend on the geometry of M (the group G) and this is obvious, but,
on the other hand, they can themselves, e.g., by their spectral properties,
determine, to some extent the geometry (dimension, volume, area of the
boundary, scalar curvature,...).
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SO(n)-gradients

∇µν = Pµν = πν ◦ ∇ ◦ jµ : C∞ (Vµ) −→ C∞ (Wν)

are often called Stein-Weiss gradients.
Without loss of generality we confine considerations to the case when the origin
bundle is irreducible:
The splitting receives then a simpler form, namely:

∇ = G1 + · · ·+ Gν + · · ·+ Gr
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SO(n)-gradients are characterized by their conformal covariance.
Fegan proved namely

H. D. Fegan, Conformally invariant first order differential operators,
Quart. J. Math. Oxford (2), 27 (1976), 371–378.

Theorem. Each SO(n)-gradient G is conformally covariant, in the sense
that there are constants c and c∗ with

G = Ω−(c+1)GΩc , G∗ = Ω−(c∗+1)G∗Ωc∗

whenever we have two conformally equivalent metrics, i.e. metrics g and g

related by g = Ω2g for some positive smooth function Ω on M.
Conversely, any conformally covariant first order linear differential operator
from an irreducible bundle is a composition of a gradient and a bundle
map.
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Examples

Example: the bundle of skew-symmetric forms
For k = 1, . . . , n − 1 consider the bundle

∧k . It is G-irreducible (when some
exceptional cases are excluded). The target bundle T ∗ ⊗

∧k splits into three r
SO(n)-irreducible invariant subbundles and the resulting splitting of the
covariant derivative is:

∇ = G a
1 + G a

2 + G a
3 .

where
G a
1 = 1

k+1d
a, G a

3 = −1
n−k+1cotra ◦ da∗.

and
G a
2 = ∇− 1

k+1d
a + 1

n−k+1
a ◦ da∗.

where da and da∗ are the usual operators of exterior derivative and
coderivative, respectively. Here cotra is the operator adjoint to the trace
operator defined by the metric.
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In the particular case k = 1 we have

∇ =
1
2
da + S − 1

n
gda∗,

The operator S is is given by

Sα = ∇sα +
1
n
δα · g , α ∈ C∞(

∧1
)

where ∇s is the symmetrized ∇,
S is known as the Cauchy-Ahlfors operator.

A. Pierzchalski, Ricci curvature and quasiconformal deformations of a
Riemanian manifold, Manuscripta Math. 66 (1989) 113-127.

Composition with the adjoint leads to the scond order strongly elliptic operator
called the Ahlfors Laplacian:

S∗S =
1
2
δd +

1
n
dδ − ric,

Here (ric is the Ricci action on forms. Notice that its leading part is a special
case of the so called weighted Laplacian

∆ab = aδd + bdδ a, b > 0.
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Example: the bundle of symmetric forms
Let Sk be the bundle of all symmetric k-tensors (forms) S =

⊕
k0

Sk . Let Sk
0 be

the subbundle of trace free symmetric k-tensors and let S0 =
⊕
k0

Sk
0 .

Excluding some exceptional dimensions there are three irreducible subbundles
of T ∗ ⊗ Sk

0 .
Define the Stein-Weiss gradients

G s
j = πs

j ◦ ∇ : C∞(S)k0 −→ C∞(T ∗ ⊗ Sk
0), j = 1, 2, 3,

where πs
j , j = 1, 2, 3 are the projections onto the irreducible subbundles.
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One can check that then
∇ = G s

1 + G s
2 + G s

3 .

G s
1 ζ =

1
k + 1

(
d sζ +

2
n + k − 1

g � d s∗ζ
)
,

G s
2 ζ = ∇ζ − 1

k+1d
sζ − 2

(n+k−1)(k+1)g � d s∗ζ + 1
n+k−1 cotrs(d s∗ζ),

G s
3 ζ =

−1
n + k − 1

cotrs(d s∗ζ)

for ζ ∈ Sk
0 .

Here d s is the symmetrized covariant derivative, d s∗ the adjoint to d s and
cotrs the adjoint to tr .
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Notice that in the particular case k = 1 the splitting of ∇ reduces to that given
previously for the skew-symmetric bundle and that

G s
1 = G a

2 , G s
2 = G a

1 , G s
3 = G a

3 .

Here G s
1 is a symmetric counterpart of the Cauchy-Ahlfors operator.

Finally notice that P s
1 is an elliptic operator. More exactly, the only elliptic one

of the three considered gradients.
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The problem of ellipticity

∇ is an elliptic operator in the sense of injectivity of its symbol. The question
arises:
which gradients in the splitting:

∇µν = πν ◦ ∇ ◦ jµ : C∞ (Vµ) −→ C∞ (Wν)

or, in particular - when the origin bundle is irreducible - in the splitting:

∇ = G1 + · · ·+ Gν + · · ·+ Gr

are elliptic.
Notice that if Gν is elliptic then the second order differential operator

G∗νGν ,

where G∗ν denotes the operator formally adjoint to Gν is strongly elliptic.
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The problem was completely solved within the three years 1995-1997:
in the three following papers:

J. Kalina, A. Pierzchalski, P. Walczak, Only one of the generaized
gradients can be elliptic, Ann. Polon. Math. 67 (1997), 111–120.

J. Kalina, B. Ørested, A. Pierzchalski, P. Walczak, G. Zang, Elliptic
gradients and highest weights, Bull. Polon. Acad. Sci. Ser. Math. 44
(1996), 511–519.

T. Branson, Stein-Weiss operators and ellipticity, J. Funct. Anal. 151
(1997), 334–383.
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The operators of Laplace type

The Laplace operator
∆s = d s∗d s − d sd s∗

on symmetric tensors was defined by Sampson in 1971. Similarly to its
counterpart: the Hodge-de Rham Laplacian

∆a = da∗da + dada∗

(here da is the exterior derivative) that acts on skew-symmetric forms, it is
strongly elliptic.
The Lichnerowicz Laplacian - an operator acting on arbitrary tensors, not
necessarily symmetric or skew symmetric - was introduced in 1961:

(∆Lt)µ1···µk = ∇∗∇tµ1···µk + q(t) (1)

where

q(t) =

k∑
i=1

R µi

ρtµ1···ρ···µk −
∑
i 6=j

R µi

ρ
µj

σtµ1···ρ···σ···µk

and where q is a zero order operator depending on the curvature. Here R µνρσ

and R µρ and the curvature and the Ricci tensors, respectively. Notice also that
since ∇ρgµν = 0, the indices in the above formulas (1) and (14) can be freely
risen and lowered.
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The Lichnerowicz Laplacian preserves the type of symmetry of tensors.
Moreover, when restricted to the subbundle of skew-symmetric tensors, it
coincides with the Hodge-de Rham Laplacian ∆a.

A. Lichnerowicz, Propagateurs et commutateurs en relativité généralé,

Inst. Hautes Études Sci. Publ. Math. 10 (1961), 1 - 56.

When restricted to the subbundle of symmetric tensors ∆L relates to the
Sampson Laplacian ∆s by a curvature term (zero order operator).
Aside from is nice properties and interesting geometry the Lichnerowicz
Laplacian is an elliptic operator .
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Some important papers on operators in the bundle of symmetric tensors are:

J.H. Sampson, On a theorem of Chern, Transactions of the American
Matheematical Society, 177 (1973) 141-153.

M. Boucetta, Spectra and symmetric eigentensors of the Lichnerowicz
Laplacian on Sn, Osaka Journal of Mathematics, 146, 235-254.

N.S. Dairbekov, V.A. Sharafutdinov, On Conformal Killing Symmetric
Tensor Fields, Siberian Advances in Mathematics, 21 2011, 1-41.

K. Heil, A. Moroianu, U. Semmelmann, Killing and conformal Killing
tensors Journal of Geometry and Physics 106 (2016) 1-6.
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Another attempt

In analogy to the classical operators of the gradient and the divergence on
functions and vector fields, respectively one can define the gradient and the
divergence in the bundle of symmetric forms. The definition is analogous to
that for skew-symmetric forms given by Rummler in 1988.
The operator has recently been investigated in detail by A. Kimaczyńska:

A. Kimaczyńska, The differential operators in the bundle of symmetric
tensors on a Riemannian manifold, PhD thesis, Lodz University (2016)
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The gradient operator grad : C∞(Sk)→ C∞(Sk ⊗ T ) is defined by

grad = ads − ds a

where d s is the symmetrized covariant derivative and the operator
a : Sk → Sk−1 ⊗ T is given locally by

aϕ =

n∑
i=1

ι eiϕ⊗ ei

where e1, . . . , en is an orthonormal basis in T and ϕ ∈ Sk

The gradient is a differentiation of the symmetric algebra in the following sense:
Proposition. For ϕ ∈ C∞(Sk) and ψ ∈ C∞(S l) we have

grad (ϕ� ψ) = gradϕ� ψ + ϕ� gradψ.
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The divergence operator div : C∞(Sk ⊗ T )→ C∞(Sk) defined by

div = tr ds − ds tr . (2)

acts on the symmetric product as follows:

Proposition. For ϕ ∈ C∞(Sk) i ψ ∈ C∞(S l ⊗ T ) we have

div (ϕ� ψ) = ϕ� divψ + gradϕ� ψ.

Moreover:
Theorem. The differential operators − grad : C∞(Sk)→ C∞(Sk ⊗ T ) and
div : C∞(Sk ⊗ T )→ C∞(Sk) are formally adjoint with respect to the
global (integral) scalar product.
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Theorem (Weitzenböck Formula) The following formula holds

∆s = − div grad −R.

where the Ricci type tensor R is locally defined by

R =

n∑
i,j=1

e∗j � ι ei R ei ,ej ,

where e1, . . . , en is a local orthonormal frame on M and e∗1 , . . . , e
∗
n is the

dual frame.
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The Weitzenböck formulas for generalized gradients

The pioneer work on the Weitzenböck formulas for the Stein-Weiss gradients
was done by Branson in:

T. Branson, Stein-Weiss operators and ellipticity, J. Funct. Anal. 151
(1997), 334–383.

He proved that there are constants bi that certain linear combinations of G∗i Gi

are not second order operators but sections of the endomorphism bundle
End(Eρ) depending on the curvature, namely

ΣibiG
∗
i Gi = {curvature endomorphism}

Each formula of this form is called then a Weitzenböck formula.
He also showed that if the number of irreducible bundles for T ∗ ⊗C Eρ is N
then the number of independent Weitzenböck formulas is [N/2].
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The methods for a concrete construction of Weitzenböck formulas were given
next in

Y. Homma, Bochner-Weitzenböck formula and curvature action on
Riemannian manifold, Trans. Am. Math . Soc 358, (2006) 87-114.

U. Semmelmann, G. Weinart, The Weitzenböck machine, Compos.
Math. 146, (2010) 507-540.

Let us recall here that the Weitzenböck formulas are a power tool for
differential geometry and global analysis. A majority of important vanishing
theorems is just their direct consequence.
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Elliptic boundary conditions

Let us introduce now the notion of ellipticity at the boundary
First of all introduce the so called half-geodesic coordinate system:
Let M be an oriented compact Riemannian manifold of dimension n with a
nonempty boundary ∂M. Near ∂M we let x = (y , r) where y = (y1, . . . , yn−1)
is a system of local coordinates on ∂M and where r is the normal distance to
the boundary. We assume ∂M = {x : r(x) = 0} and that ∂

∂r
is the inward unit

normal. We further normalize the choice of coordinate by requiring the curves
x(r) = (y0, r) for r ∈ [0, δ) are unit speed geodesics for any yo ∈ ∂M. The
inward geodesic flow identifies a neighborhood of ∂M in M with the collar
∂M × [0, δ) for some δ > 0. The collaring gives a splitting of
TM = T∂M ⊕ TR and a dual splitting T ∗M = T ∗∂M ⊕ T ∗R. To reflect this
splitting we let for ξ ∈ T ∗M that ξ = (ζ, z) where ζ ∈ T ∗∂M, z ∈ T ∗R.
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To define the notion of ellipticity of a ”selfadjoint” boundary condition for a
linear differential operator L, we consider the ordinary differential equation:

σL(y , 0, ζ,Dr )f (r) = λf (r) with lim
r→∞

f (r) = 0

where
(ζ, λ) 6= (0, 0) ∈ T ∗∂M × C \ R+.

We say that boundary condition is elliptic with respect to C \ R+ if:

• L is elliptic in the interior of M,

• on the boundary there always exists a unique solution to this ordinary
differential equation satisfying the boundary condition.
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A consequence of such the ellipticity is the following

Theorem. Let V be a vector bundle on a compact Riemannian manifold
with nonempty boundary Let P : C∞(V )→ C∞(V ) be an elliptic
differential operator and B a self-adjoint boundary condition.
(a) We can find a complete orthonormal system {φn}, n = 1, 2, . . . for L2V
of eigenvectors of P: Pφn = λnφ.
(b) The eigenvectors φn are smooth and satisfy the boundary condition.
Moreover limn→∞|λn| → ∞.
(c) If we order the eigenvalues |λ1| ¬ |λ2| ¬ . . . then there exists a
constant C and an exponent δ such that |λn|  Cnδ if n is sufficiently
large. cf.

P. B. Gilkey, Invariance theory, the heat equation and the Atiyah -
Singer index theorem, Publish or Perish, Wilmington, Delaware, 1984

Notice that the theorem enables searching for the solutions by standard
methods of harmonic analysis.
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The system of natural boundary conditions

Recall that ∇ in an irreducible bundle have the orthogonal splitting:

∇α = G1α + · · ·+ Gsα

Notice the followig universal formula:

B. Ørsted, A. Pierzchalski, The Ahlfors Laplacian on a Riemannian
manifold with boundary, Mchigan Math. J. 43 (1) (1996), 99-122.

Theorem. For each differential operator Gi , i = 1, . . . , s (in fact for each
Stein - Weiss gradient) and for any sections α and β

(Giα, β)− (α,G∗i β) = −
∫
∂M

〈α, β(ν)〉Ω∂M

Applying that formula twice we get that:

(G∗Gα1, α2)−(α1,G
∗Gα2) =

−
∫
∂M

(〈α1, iνGα2〉 − 〈iνGα1, α2〉)Ω∂M

This is the point for a formulation universal boundary conditions for ∇ and
possibly for other important differential operators, in particular for
gradients.
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To be elliptic at the boundary the conditions must be chosen in a subltle way.
They must be namely:
- strong enough to force the self-adjointness of the operator L = G∗G i.e, to
force the vanishing of the integral over the boundary.
- weak enough to assure the existence of solutions to the considered ordinary
differential equation.
A natural system of boundary conditions was suggested in

T. P. Branson, A. Pierzchalski Natural boundary conditions for gradients,
manuscript, 2004

Let us describe the idea:
At the boundary, the action of the special orthogonal group SO(n) is replaced
by the action of of its subgroup that keep the normal vector invariant. So, our
irreducible bundle splits now onto, say s, orthogonal subbundles. Denote by
p1, . . . , ps the suitable projections on these subbundles.
Now, split both α and iνGα by taking the compositions with the projections
onto the just obtained (orthogonal and irreducible) subbundles.
We get then that at the boundary:

α = p1α + · · ·+ psα

and, similarly
iνGα = p1iνGα + · · ·+ ps iνGα
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As a result we get the following decomposition for the scalar products that
appear in the integrand:

〈α1, iνGα2〉 =

+ 〈p1α1, p1iνGα2〉
+ 〈p2α1, p2iνGα2〉
. . .

+ 〈psα1, ps iνGα2〉 .

Now, the right hand side of the last equality can be written (symbolically) in a
form of a two column matrix

p1α1 p1iνGα2
p2α1 p2iνGα2

...
...

psα1 ps iνGα2


.
A natural boundary condition will be obtained by the demand that exactly one
term of each row of the matrix is equal to zero.
We get that way 2s natural boundary conditions.
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Few examples

• the case of operators acting on functions , say

grad : C∞(M ⊗ R)→ C∞(T ),

where T is the tangent bundle.
The Stokes formula for the elliptic operator dyw grad says in this case

∫
M

divgrad f g ΩM −
∫
M

f divgrad g = −
∫
∂M

(f ∇νg −∇ν f g)Ω∂M

Since the tangent bundle is irreducible, we have a one row matrix[
∗ ∗

]
So the natural boundary conditions take the form:[

0 ∗
]

or
[
∗ 0

]
,

or, explicitly,
f = 0 on ∂M or ∇ν f = 0 on ∂M

what means the Dirichlet condition or the Neumann condition, respectively.
They both are elliptic!
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• the case of operators acting on exterior forms of arbitrary degree.
Also in this case the bundle splits onto two summands at the boundary (so
s = 2) and the four (= 22) boundary conditions appear naturally. They have an
interesting symmetry with respect to the Hodge star operator.
The obtained that way boundary conditions have been successfully tested in
the case of a class of second order operators acting on differential
skew-symmetric forms of an arbitrary degree in the Euclidean ball in Rn:

W. Kozłowski, A. Pierzchalski, Natural boundary value problems for
weighted form Laplacians, Ann. Sc. Norm. Sup. Pisa, VII, (2008), 343-367.
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The conditions are:
Dirichlet boundary condition (D):

ωT = 0 and ωN = 0 on ∂M.

Absolute boundary condition (A):

ωN = 0 and (dω)N = 0 on ∂M.

Relative boundary condition (R):

(δω)T = 0 and ωT = 0 on ∂M.

Neumann boundary condition (B):

(δω)T = 0 and (dω)N = 0 on ∂M.

Here ωT and ωN denote the tangent and the normal parts of ω at the
boundary, respectively.
The first three conditions are known to geometers. In particular they appear in
the Weyl’s paper mentioned above. The fourth one seems to be unknown. But,
being natural, it should have a geometric or physical meaning.
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Observe also a surprising symmetry with respect to the Hodge star operator ∗.
Namely, by the following known relations:

∗∗ = ±1, (∗ω)T = ± ∗ (ωN), (∗ω)N = ± ∗ (ωT )

and

δω = ± ? d ? ω, dω = ± ? δ ? ω

It follows easily that the set of all the four boundary conditions {D,A,R,B} is
star - invariant.
More precisely, each of the conditions D,B is star-invariant, while the
conditions A and R are star-symmetric: each to the other.
Also in this case
All the four conditions have been proved to be elliptic.
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• the case of operators acting on the bundle of symmetric forms of
arbitrary degree k.

The bundle of symmetric forms splits onto k + 1 summands at the boundary,
so s = k + 1, and – in contrast to the skew-symmetric case – the number of
summands in the splitting depends on the degree of forms.

As a result there are 2k+1 boundary conditions for the bundle of symmetric
tensors of order k.
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All of them were investigated in

A. Kimaczyńska, The differential operators in the bundle of symmetric
tensors on a Riemannian manifold, PhD thesis, Lodz University (2016)

and

A. Kimaczyńska, A. Pierzchalski, Elliptic operators in the bundle of
symmetric tensors, Banach Center Publications, 113 (2017), 193-218

The explicit shape of each of the possible 2k+1 boundary conditions was
described.
They have been investigated in detail. It was proved by an original construction
of the so called auxiliary bundle that

Theorem. All the natural 2k+1 boundary conditions are elliptic.
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The symplectic case

In the case of a symplectic manifold elliptic operators were constructed in

L-S. Tseng, S-T. Yau Cohomology and Hodge theory on symplectic
manifolds I, J. Differential Geom. 91 (2012) 383-416.

L-S. Tseng, S-T. Yau Cohomology and Hodge theory on symplectic
manifolds II, J. Differential Geom. 91 (2012) 417-443.

L-S. Tseng, L. Wang Hodge theory and symplectic boundary conditions,
arXiv: 1409.8250v1, pp 35

Let (M2n, ω) be a symplectic manifold, ie. a 2n-dimensionl manifold (M2n with
a skew-symmetric two-form ω that is assumed to be closed (dω = 0) and
nondegenerte (ωn 6= 0). In local coordinates we can write:

ω =
1
2

∑
ωi,jdx

i ∧ dx j .
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Let Ωk denote the space of smooth k - skew - symmetric forms on M.
The Lefschetz operator L : Ωk → Ωk+2 and its dual operator Λ : Ωk → Ωk−2

are defined by
L(η) = ω ∧ η;

Λ(η) =
1
2

(ω−1)i,j ι ∂
xi
ι ∂

xj
η,

where ω−1 denotes the inverse matrix of ω.
The degree counting operator H : Ω∗ → Ωk is defined by

H =
∑
k

(n − k)
∏k

,

where Ω∗ denotes the direct sum of Ωk , k = 0, . . . , 2n and
∏k is the projection

operator onto forms of degree k. L and Λ together with H give a representation
of sl(2) algebra acting on Ω∗:

[Λ, L] = H, [H,Λ] = 2Λ, [H, L] = −2L.

This sl(2) representation allows a Lefschetz decomposition of forms in terms
of irreducible finite - dimensional sl(2) modules.
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Let us recall the action (representation) of the Lie algebra sl(2) in a vector
space. Take the standard basis of the algebra:

x =

[
0 1
0 0

]
, y =

[
0 0
1 0

]
, h =

[
1 0
0 −1

]
.

We have then
[h, x ] = 2x , [h, y ] = −2x , [x , y ] = h
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Let V be a vector space. We say that V is an sl(2)-module if a
homeomorphism of sl(2) into the algebra of endomorphisms of V is given. It
can be proved that h acts diagonally on V . V can be then decomposed as the
direct sum of eigenspaces

Vλ = {v |h.v = λv}

. We accept the convention that Vλ still make sense (and is 0) when λ is not
an eigenvalue for the endomorphism of V which represents h.
We call λ a weight of h in V and Vλ a weight space, if only Vλ 6= 0.

Lemma. If v ∈ Vλ, then x .v ∈ Vλ+2 and y .v ∈ V{λ− 2}.

In the case dimV is finite, the Lemma implies that x and y are represented
by nilpotent endomorphisms of V . Moreover, since the sum V = Vλ is
direct, there must exist Vλ 6= 0 such that Vλ+2 = 0. For such λ any nonzero
vector in Vλ is called a maximal vector of weight λ.
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sl(2) irreducile modules are completely characterized in the following

Theorem. Assume that V is an irreducible module for sl(2).
(a) Relative to the action of h, V is the direct sum of weight spaces Vµ,
µ = m,m − 2, . . . ,−(m − 2),−m, where m =dimV − 1 and dimVµ = 1 for
ewch µ.
(b) V has (up to nonzero scalar multiples) a unique maximal vector,
whose weight (called the highest weigth of V ) is m.
(c) The action of sl(2) on V is given explicitely by the following formulas:

h.vi = (λ− 2i)vi ,

y .vi = (i + 1)vi+1,

x .vi = (λ− i + 1)vi−1,

where v0 is a maximal vector in Vλ, v−1 = 0 and vi = (1/i !)y i .v0.
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Comming back to the action of sl(2) on the space of k-forms on M one can
prove that
The highest weight states of these irreducible sl(2) modules are the
spaces of primitive forms, denoted by P∗.
Recall that a form η ∈ Ωk is called primitive if

Λη = 0.

This is equivalent to the condition

Ln−k+1η = 0

.
By the definition, the degree of primitive the form is constrained to be
k ¬ n.
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Moreover, for a given η ∈ Ωk , there is a unique Lefschetz decomposition into
primitive forms as

η =
∑

rmax(k−n,0)

1
r !
LrBk−2r ,

where Bk−2r ∈ Pk−2r can be expressed in terms of η:

Bk−2r =

(∑
s=0

ar,s
1
s!
LsΛr+s

)
η.

Each term of this decomposition can be labeled by a pair (r , s) corresponding
to the space

Lr,s = {A ∈ Ω2r+s : A = LrBs with Bs ∈ P s}.
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Let d be the exterior derivative on Lr,s .

Proposition. The operator d acting on Lr,s leads at most two terms:

d : Lr,s → Lr,s+1 ⊕ Lr+1,s−1

with

dLrBs = Lr (dBs) = LrBs+1 + Lr+1Bs−1 when s < n,

dLrBn = Lr (dBn) = Lr+1Bn−1.

Differential operators in different geometries



Define the first order differential operators

∂+ : Lr,s → Lr,s+1

and
∂− : Lr,s → Lr,s−1

by:

∂+(LrBs) = LrBs+1,

∂−(LrBs) = LrBs−1

Then d = ∂+ + L∂−. Here Bs ,Bs+1,Bs−1 ∈ P∗ and dBs = Bs+1 + LBs−1.
Define also another first order differential operator dΛ : Ωk → Ωk−1 given by

dΛ = dΛ− Λd .
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Let (M, ω) be a symplectic manifold and (ω, J, g) a compatible triple. Recal
that then J is an almost complex structure on M such that

ω(Jv , Jw) = ω(v ,w)

and
ω(v , Jv) > 0 for v 6= 0

Tseng and Yau defined the following Laplacians on primitive forms:

∆+ = ∂+∂
∗
+ + ∂∗+∂+ on Pk , for k < n;

∆− = ∂−∂
∗
− + ∂∗−∂− on Pk , for k < n;

∆++ = (∂+∂−)∗(∂+∂−) + (∂+∂
∗
+)2, on Pn;

∆−− = (∂+∂−)(∂+∂−)∗ + (∂∗−∂−)2, on Pn.

Theorem. Each od the four Laplacians is an elliptic operator.
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For any η ∈ Ωk , they also defined defined the following operators:

∆ddΛ (η) = dΛ∗d∗ddΛη +
1
4

(dd∗ + dΛdΛ∗)2η,

∆d+dΛ (η) = ddΛdΛ∗d∗η +
1
4

(d∗d + dΛ∗dΛ)2.

Theorem. The operators ∆ddΛ and ∆d+dΛ are elliptic.
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Symplectic boundary conditions

Let (M2n, ω) be a compact symplectic manifold with smooth boundary ∂M.
Let (ω, J, g) be a compatible triple on it.
Let ρ be a boundary defining function, i. e. such function that

ρ < 0 on M and ρ(x) = 0 if and only if x ∈ ∂M,

the norm of gradient | ∇ρ |= 1 on ∂M.
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The following boundary conditions have been suggested by L-S. Tseng and L.
Wang.
A form η , satisfies:

Dirichlet boundary condition, denoted by η ∈ D, if d(ρη)|∂M = 0;

Neumann boundary condition, denoted by η ∈ N, if d∗(ρη)|∂M = 0;

J-Dirichlet boundary condition, denoted by η ∈ JD, if dΛ∗(ρη)|∂M = 0;

J-Neumann boundary condition, denoted by η ∈ JN, if dΛ(ρη)|∂M = 0;

∂+-Dirichlet boundary condition, denoted by η ∈ D+, if ∂+(ρη|∂M) = 0;

∂+-Neumann boundary condition, denoted by η ∈ N+, if ∂∗+(ρη|∂M) = 0;

∂−-Dirichlet boundary condition, denoted by η ∈ D−, if ∂−(ρη|∂M) = 0;

∂−-Neumann boundary condition, denoted by η ∈ N−, if ∂∗−(ρη|∂M) = 0.
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Many self-adjoint and elliptic boundary problems can now be formulated.
Let us quote the following example:

∆+Φ = Ψ, on M

∂+(ρΦ) = 0, on ∂M, and ∂+(ρ∂∗+Φ) = 0 on ∂M.
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Notice that on a symplectic manifold the de Rham-Hodge type Laplcian

∆ = d∗d + dd∗

completely degenerates. Here the d∗ is the operator adjoint to d with respect
to the symplectic volume form
The remedy is making use of a compatible triple (ω, J, g) composed of the
symplectic form, an almost complex structure and a Riemannian metric. The
Riemannian metric gives us then the standard inner product on differential
forms. With that product we can define the adjoint operators. They relate to
d∗ by formulas involving the almost complex structure J.
Finally second order elliptic operators can be constructed in a usual way.
Some operators of this form were constructed and investigated in detail by A.
Najberg in her recent PhD dissertation:

A. Najberg, The gradient and the divergence on symplectic manifolds,
PhD dissertation, Lodz University (2019), to appear.
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