An overview on G_2 -structures and special metrics

Anna Fino

Dipartimento di Matematica Università di Torino

Dirac operators in differential geometry and global analysis in memory of Thomas Friedrich (1949-2018) Bedlewo, 6-12 October 2019

- \bigcirc G_2 -structures
- 2 Known examples of compact manifolds with closed G_2 -structures

3 Laplacian flow and ERP condition

*G*₂-structures

Definition

A G_2 -structure on M^7 is given by a 3-form φ with pointwise stabilizer isomorphic to G_2 .

Proposition (Fernández, Gray)

The following are equivalent:

- (a) $\nabla^{LC}\varphi = 0$;
- (b) $d\varphi = 0$ and $d(*\varphi) = 0$;
- (c) $Hol(g_{\varphi})$ is isomorphic to a subgroup of G_2 .

Metrics induced by parallel G_2 -structures are Ricci-flat [Bonan].

Intrinsic torsion forms

The intrinsic torsion of a G_2 -structure can be identified with $\nabla^{LC}\varphi$ and it is encoded in the exterior derivatives $d\varphi$, $d*\varphi$ as

$$d\varphi = \tau_0 * \varphi + 3\tau_1 \wedge \varphi + *\tau_3,$$

$$d * \varphi = 4\tau_1 \wedge *\varphi + \tau_2 \wedge \varphi$$

where τ_i is an intrinsic torsion *i*-form.

Example

- nearly parallel G_2 -structure: $d\varphi = \tau_0 * \varphi \Leftrightarrow \tau_1 = \tau_2 = \tau_3 = 0$
- closed G_2 -structure: $d\varphi = 0 \Leftrightarrow \tau_0 = 0, \ \tau_1 = 0, \ \tau_3 = 0$

Scalar curvature

The scalar curvature $Scal(g_{\varphi})$ may be expressed in terms of τ_i .

Example

- For a nearly-parallel G_2 -structure $(d\varphi = \tau_0 * \varphi)$, the associated metric g_{φ} is Einstein with $Scal(g_{\varphi}) = \frac{21}{8}\tau_0^2 > 0$.
- For a closed G_2 -structure $(d\varphi = 0)$, $S_{cal}(g_{\varphi}) = -\frac{1}{2}|\tau_2|^2 \leq 0$

Theorem (Bryant; Cleyton, Ivanov)

No compact 7-manifolds can admit a closed (non-parallel) G_2 -structure φ such that g_{φ} is Einstein.

A spinorial description

 G_2 -structures can be defined using globally defined unit spinors σ : σ induces the G_2 -form

$$\varphi(X,Y,Z) := \langle X \cdot Y \cdot Z \cdot \sigma, \sigma \rangle,$$

where dots denote Clifford multiplication and $\langle \cdot, \cdot \rangle$ is the scalar product in the spinor bundle.

Definition

There exists an endomorphism S of TM satisfying

$$\nabla_X \sigma = S(X) \cdot \sigma,$$

for every tangent vector X on M, called the intrinsic endomorphism of (M, g, σ) .

Fernández-Gray classes can be described in terms of the intrinsic endomorphism *S* [Agricola, Chiossi, Friedrich, Höll].

In particular:

- φ is nearly parallel if and only if $S = \lambda Id$ (i.e. σ is a Killing spinor) [Friedrich, Kath, Moroianu, Semmelmann]
- φ is closed if and only if $S \in \mathfrak{g}_2$.

Remark

For a closed G_2 -structure φ defined by σ we have

- *S* is skew-symmetric;
- σ is harmonic, i.e. $D\sigma = 0$, where D is the Riemannian Dirac operator.

Nearly parallel G_2 -structures

Theorem (Friedrich, Kath, Moroianu, Semmelmann)

A 7-dim simply-connected spin manifold (M,g) admits a Killing spinor σ if and only if \exists a (nearly)-parallel G_2 -structure φ (i.e. $d\varphi = -8a * \varphi$). Moreover, φ is defined by σ in a unique way. If $a \neq 0$ and $M \neq S^7$ then there are three types, distinguished by the dimension m_a of the space of all Killing spinors.

In particular, $1 \le m_a \le 3$, $m_{-a} = 0$ and M is either 3-Sasakian $(m_a = 3)$, a Sasaki-Einstein $(m_a = 2)$ or a proper nearly parallel $(m_a = 1)$ [Friedrich, Kath].

Remark

Compact examples for any type are known [Boyer, Galicki; Friedrich, Kath, Moroianu, Semmelmann].

The 7-sphere

The first example of proper nearly parallel G_2 -structure is the standard one on (S^7, g_{can}) .

Theorem (Friedrich)

Let (S^7, φ, g_{can}) be a nearly parallel G_2 -structure on the standard 7-sphere. Then φ is conjugated, under the action of the isometry group SO(8), to the standard nearly parallel G_2 -structure of S^7 .

Problem

Does S^7 admits closed G_2 -structures?

Closed *G*₂-structures

A G_2 -structure φ is closed (or calibrated) if $d\varphi = 0$. Then

$$d * \varphi = \tau \wedge \varphi,$$

where $\tau \in \Lambda_{14}^2 \cong \mathfrak{g}_2$, i.e. $\tau \wedge \varphi = - * \tau$ and $\tau \wedge * \varphi = 0$.

Remark

- $\tau = d^*\varphi \Rightarrow d^*\tau = 0 \Rightarrow d\tau = \Delta_{\varphi}\varphi$, where $\Delta_{\varphi} = dd^* + d^*d$ is the Hodge Laplacian.
- φ defines a calibration on M (i.e. $\varphi|_{\xi} \leq vol_{\xi}$, \forall tg oriented 3-plane ξ) [Harvey-Lawson].

Associative 3-fold: $N^3 \subset M$ calibrated by φ , i.e. $\varphi|_{N^3} = dV_{N^3}$.

Coassociative 4-fold: $N^4 \subset M$ is coassociative if $\varphi|_{N^4} = 0$.

Ricci tensor

The Ricci tensor and the scalar curvature of g_{φ} can be expressed in terms of τ :

$$extit{Ric}(g_{arphi}) = rac{1}{4} | au|^2 g_{arphi} - rac{1}{4} j (d au - rac{1}{2} * (au \wedge au)),$$

where $j: \Lambda^3 \to S^2$ is defined by

$$j(\beta)(X,Y) = *(\iota_X \varphi \wedge \iota_Y \varphi \wedge \beta)$$

The scalar curvature is given by

$$Scal(g_{\varphi}) = -\frac{1}{2}|\tau|^2 \leq 0.$$

ERP condition

Theorem (Cleyton-Ivanov; Bryant)

If M is compact with a closed G_2 -structure φ , then $\int_M [Scal(g_{\varphi})]^2 dV_{\varphi} \leq 3 \int_M |Ric(g_{\varphi})|^2 dV_{\varphi}$

[Bryant]: equality holds if and only if

$$d au = rac{| au|^2}{6} arphi + rac{1}{6} *_{arphi} (au \wedge au),$$

in such a case, φ is called extremally Ricci pinched (ERP).

Automorphism group

Remark

General results on the existence of closed G_2 -structures on (compact) 7-manifolds are still not known.

$$Aut(M,\varphi) := \{ f \in Diff(M) | f^*\varphi = \varphi \} \Rightarrow$$
 its Lie algebra is $\mathfrak{aut}(M,\varphi) = \{ X \in \chi(M) | L_X \varphi = 0 \}.$

Theorem (Podestá, Raffero)

M compact with φ closed non-parallel. If $X \in \mathfrak{aut}(M, \varphi)$, then the 2-form $i_X \varphi$ is harmonic. Consequently:

- dim aut (M, φ)) $\leq b_2(M)$;
- $aut(M, \varphi)$ is abelian with $dim \leq 6$.

Known examples of manifolds with closed G_2 -structures

⇒ There are no compact homogeneous examples and no compact examples of any cohomogeneity in semisimple case.

Examples

- Solvable (in particular nilpotent) Lie groups G with left-invariant closed G_2 -structures \hookrightarrow compact locally homogeneous $\Gamma \setminus G$ [Fernández, Conti-Fernández, Freibert, Lauret, ...]
- Complete closed G_2 -structures which are invariant under the cohomogeneity one action of a compact simple Lie group [Cleyton, Swann].
- Non-solvable Lie groups with left-invariant closed G_2 -structures [F, Raffero].

A compact example using orbifold resolution

Motivation: Compact Joyce examples with $Hol(g_{\varphi}) = G_2$ obtained as orbifold resolutions of \mathbb{T}^7/F with $F \subset G_2$ finite subgroup and by a perturbation argument.

Idea: instead of \mathbb{T}^7 start with a nilmanifold $M = \Gamma \setminus N$ with an invariant closed closed G_2 -structure and $N \cong \mathbb{R}^7$ 3-step nilpotent with structure equations

$$[e_1, e_2] = -e_4, [e_1, e_3] = -e_5, [e_1, e_4] = -e_6, [e_1, e_5] = -e_7$$

and $\Gamma\cong 2\mathbb{Z}\times\mathbb{Z}^6$.

Remark

 $M = \Gamma \backslash N$ is diffeomorphic to a mapping torus M_{ν} of \mathbb{T}^6 by a diffeomorphism ν of \mathbb{T}^6 induced by a linear automorphism of \mathbb{R}^6 with projection

$$[(x_1,\ldots,x_7)]\in M\mapsto x_1+2\mathbb{Z}\in S^1=\mathbb{R}/2\mathbb{Z}.$$

Consider the action of $F = \mathbb{Z}_2$ generated by

$$\rho: (x_1,\ldots,x_7) \in N \mapsto (-x_1,-x_2,x_3,x_4,-x_5,-x_6,x_7) \in N$$

Then

$$\rho(ab) = \rho(a)\rho(b), \forall a, b \in N,$$

 $\hookrightarrow \rho$ induces an action of \mathbb{Z}_2 on $M = \Gamma \backslash N$.

Theorem (Fernández, F, Kovalev, Munoz)

- $\hat{M} = M/\mathbb{Z}_2$ is a compact 7-orbifold with $b_1(\hat{M}) = 1$ and an orbifold closed G_2 -form $\hat{\varphi}$. The singular locus S of \hat{M} is the disjoint union of 16 copies of T^3 .
- \exists a resolution $\pi: (\tilde{M}, \tilde{\varphi}) \to (\hat{M}, \hat{\varphi})$ with \tilde{M} compact smooth manifold, $b_1(\tilde{M}) = 1$ and $\tilde{\varphi} = \pi^* \hat{\varphi}$ in the complement of a small neighborhood of the exceptional locus $E = \pi^{-1}(S)$.
- Moreover, $\pi_1(\tilde{M}) = \mathbb{Z}$ and \tilde{M} is formal.

Associative 3-folds of $(\tilde{M}, \tilde{\varphi})$

One can construct examples of associative 3-folds of \tilde{M} applying

Proposition (Joyce)

Let (Y, φ) with a closed G_2 form φ and $\sigma \neq id_Y$ be an involution of Y such that $\sigma^*\varphi = \varphi$. Then the fixed point set P is an embedded associative 3-fold. Furthermore, if Y is cpt then so is P.

Using the involution on N:

$$\sigma: (x_1, x_2, x_3, x_4, x_5, x_6, x_7) \to (-x_1, -x_2, x_3, x_4, -x_5, \frac{1}{2} - x_6, x_7) \Rightarrow$$

Theorem (Fernández, F, Kovalev, Munoz)

- $(\tilde{M}, \tilde{\varphi})$ has associative calibrated 3-tori.
- For each of those 3-tori, \exists a 3-dimensional family of non-trivial associative deformations.

Laplacian flow

Idea: use a geometric flow to deform closed G_2 -structures and eventually obtain a parallel one

Definition (Bryant)

Let φ_0 be a closed G_2 -structure on M^7 . The Laplacian flow (LF) is

$$\begin{cases} \partial_t \varphi(t) = \Delta_{\varphi(t)} \varphi(t), \\ d\varphi(t) = 0, \\ \varphi(0) = \varphi_0. \end{cases}$$

where $\Delta_{\varphi(t)}$ is the Hodge Laplacian of $g_{\varphi(t)}$.

if $\varphi(t)$ solves the LF, then $\varphi(t) \in [\varphi_0]$ and

$$\partial_t g_{\varphi(t)} = -2Ric(g_{\varphi(t)}) + I.o.t.$$

Remark

If *M* is compact, then

- stationary points are parallel G_2 -structures, i.e. $d\varphi = 0$, $d * \varphi = 0$.
- the LF is the gradient flow of Hitchin's volume functional $\mathcal{V}: \varphi \in [\varphi_0] \mapsto \int_M \varphi \wedge *\varphi$.

V is monotonically increasing along the LP, its critical points are parallel G_2 -structures and they are strict maxima.

Theorem (Bryant, Xu)

Assume that (M, φ_0) is compact. Then the LF has a unique solution for short time $t \in [0, \epsilon)$, with ϵ depending on $\varphi_0 = \varphi(0)$.

Recent developments

- If φ_0 is near a torsion-free G_2 -structure $\tilde{\varphi}$, then the LF converges to a torsion-free G_2 -structure which is related to $\tilde{\varphi}$ via a diffeomorphism [Xu, Ye; Lotay, Wei].
- long-time existence result, uniqueness and compactness theory, stability of critical points, real analicity [Lotay-Wei].
- non-collapsing under the assumption of bounded Scal [G. Chen].
- lower dimensional reduction of LF [Fine-Yao; F-Raffero].

Solutions to the LF

Study of explicit solutions on

- simply connected solvable Lie groups with left-invariant closed G_2 -structure [Fernández-F-Manero, Lauret, F-Raffero].
- \mathbb{T}^7 with cohomogeneity one closed G_2 -structure [Huang-Wang-Yao].

Remark

Self-similar solutions $\varphi(t) = \rho(t)f_t^*\varphi$ of the LF \iff closed G_2 -structures φ satisfying

$$\Delta_{\varphi}\varphi = \lambda\varphi + L_{X}\varphi$$

for some $\lambda \in \mathbb{R}$ and vector field X.

According to the sign of λ , a Laplacian soliton is called shrinking $(\lambda < 0)$, steady $(\lambda = 0)$, or expanding $(\lambda > 0)$.

Theorem (Lin; Lotay-Wei)

On a compact manifold any Laplacian soliton φ (which is not torsion-free) must have $\lambda > 0$ and $X \neq 0$.

In particular, on a compact 7-manifold the only steady Laplacian solitons are given by parallel G_2 -structures.

Remark

The existence of non-trivial expanding Laplacian solitons on compact manifolds is still an open problem.

∃ steady, shrinking and expanding (homogeneous) solitons on non-compact manifolds [Lauret, Nicolini; F-Raffero].

ERP condition

Problem

Study the behaviour of the LF starting from an ERP φ_0 .

Recall: a closed G_2 -structure φ is ERP if

$$d\tau = \frac{|\tau|^2}{6}\varphi + \frac{1}{6} *_{\varphi} (\tau \wedge \tau) \iff$$

$$\int_{M} [Scal(g_{\varphi})]^{2} dV_{\varphi} = 3 \int_{M} |Ric(g_{\varphi})|^{2} dV_{\varphi}$$

Proposition (Bryant)

M compact with φ ERP, then

- the norm $|\tau|$ is constant and $\tau^3 = 0$;
- τ^2 (resp. $*_{\varphi}(\tau^2)$) is a non-zero closed simple 4-form (resp. 3-form) of constant norm;
- $TM = P \oplus Q$ where

$$P:=\left\{X\in\mathit{TM}\,|\,\iota_X(\tau^2)=0\right\},\quad Q:=\left\{X\in\mathit{TM}\,|\,\iota_X\ast_\varphi(\tau^2)=0\right\}.$$

Moreover, the P-leaves are associative submanifolds, while the Q-leaves are coassociative submanifolds.

• $\operatorname{Ric}(g_{\varphi}) = -\frac{1}{6}|\tau|^2 g_{\varphi}|_P$ non-positive with eigenvalues $-\frac{1}{6}|\tau|_{\varphi}^2$ of multiplicity three and 0 of multiplicity four.

Theorem (F, Raffero)

M compact with an ERP closed G_2 -structure φ . Then the solution of LP with $\varphi(0) = \varphi$ is

$$\varphi(t) = \varphi + f(t) \, d\tau,$$

with
$$f(t) = \frac{6}{|\tau|_{\varphi}^2} \left(\exp\left(\frac{|\tau|_{\varphi}^2}{6} t\right) - 1 \right)$$
.

In particular:

- $\varphi(t)$ is ERP for all $t \in \mathbb{R}$ with $\tau(t) = \exp\left(\frac{|\tau|_{\varphi}^2}{6}t\right)\tau$.
- LF has constant velocity $|\Delta_{\varphi(t)}|_{\varphi(t)} = \frac{1}{\sqrt{6}} |\tau|^2$.
- $\operatorname{Ric}(g_{\varphi(t)}) = \operatorname{Ric}(g_{\varphi}).$

Asymptotic behaviour

Remark

- If $\varphi(0)$ is not ERP, then $\varphi(t)$ cannot become ERP in finite time.
- ullet The total volume $Vol_{g_{arphi(t)}}(M)=\int_M dV_{arphi(t)}=\exp\left(rac{| au|^2}{3}t
 ight) Vol_{g_{arphi}}(M).$

Proposition (F, Raffero)

- when $t \to +\infty$, the the volume of the P-leaves goes to zero relative to the volume of the manifold, while the volume of the Q-leaves and the volume of the manifold grow at the same rate.
- when $t \to -\infty$, the volume of the Q-leaves and the volume of the manifold tend to zero at the same rate.

Examples

- A compact quotient of the non-compact homogeneous $M = SL(2, \mathbb{C}) \ltimes \mathbb{C}^2/SU(2)$ by $\Gamma \subset Aut(M, \varphi)$ [Bryant].
- Left-invariant ERP on solvable Lie groups which are necessarily steady Laplacian soliton [Lauret, Nicolini].
- non-locally homogeneous examples [Ball].

Remark

 \exists a steady Laplacian soliton on a solvable Lie group which is not ERP [F, Raffero].

 G_2 -structures Known examples of compact manifolds with closed G_2 -structures **Laplacian flow and ERP condition**

THANK YOU VERY MUCH FOR THE ATTENTION!!