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Gap phenomenon for parabolic geometries

The algebra of infinitesimal symmetries for parabolic Cartan geometries:

finite dimensional,

the maximal dimension achieved for flat structures,

Gap phenomenon: maximal symmetry dimension for non-flat
structures drops significantly.

Submaximally symmetric structure – structure achieving maximal
symmetry dimension in the non-flat case. General theory studied by B.
Kruglikov and D. The in The gap phenomenon in parabolic geometries , J.
reine angew. math. 723, 153-216 (2017).
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Projective structure:

a class of torsion-free connections which have the same geodesics,

is parametrized by 1-forms and the equivalence relation is explicitly
given by

D ∼p D ′ ⇔ ∃γ : ∀Y ,Z ∈ ΓTM D ′YZ = DYZ + [[Y , γ]]pZ ,

where γ is a 1-form and [[Y , γ]]pZ = γ(Y )Z + γ(Z )Y .

is a parabolic Cartan geometry with G = PGL(n + 1,R) and
P0 = GLnR.

c-projective and quaternionic structures: complex and quaternionic
analogues of projective structure.
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(S , J) – a complex manifold equipped with a complex connection ∇.
A curve γ is called J–planar if it satisfies

∇γ·γ· ∈ Span(γ·, Jγ·)

.

C–projective structure:

the class of complex connections which share the same J–planar
curves,

is parametrized by 1-forms and the equivalence relation is explicitly
given by

D ∼c D ′ ⇔ ∃γ : ∀Y ,Z ∈ ΓTM D ′YZ = DYZ + [[Y , γ]]cZ ,

where γ ∈ T ∗M and
[[Y , γ]]c(Z ) = 1

2(γ(Y )Z + γ(Z )Y − γ(JY )JZ − γ(JZ )JY ).

is a parabolic Cartan geometry with G = PGL(n + 1,C) with
reduction of the structure group GL(m,C) ⊂ GL(2m,R).
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Definition

Let n ≥ 2. A 4n-dimensional smooth manifold M is called quaternionic if
it is equipped with a rank 3 subbundle Q ⊂ End(TM) such that Q is
fibrewise generated by three anti-commuting almost complex structures
I , J,K satisfying

I 2 = J2 = K 2 = IJK = −1,

and such that there exists a torsion-free connection D, called a
quaternionic connection, preserving Q (i.e DXQ ⊂ Q).

There is a notion of q-planar curves and one can show that all
quaternionic connections have the same q-planar curves.



For quaternionic manifold (M,Q,D):

the class of quaternionic connections satisfy the following equivalence:

D ∼q D ′ ⇔ ∃γ : ∀Y ,Z ∈ ΓTM D ′YZ = DYZ + [[Y , γ]]qZ , (1)

where γ ∈ T ∗M and

[[Y , γ]]q(Z ) =
1

2
(γ(Y )Z + γ(Z )Y − Σ3

i=1(γ(IiY )IiZ + γ(IiZ )IiY ))

where I1, I2, I3 is a pointwise frame of Q.

it is a parabolic Cartan geometry with G = PGL(n + 1,H) with
reduction of the structure group GL(n,H)×Z/2 Sp(1) ⊆ GL(4n,R).



Definition

Let (S , J, [D]c) be a c-projective 2n-manifold. A vector field V is an
infinitesimal c-projective symmetry if the Lie derivatives along V of J and
of the class [D]c vanish.

The submaximal c-projective structures have been studied in
B. Kruglikov, V. Matveev, D. The, Submaximally symmetric c-projective
structures, Int. J. Mat. 27, No. 3, 1650022 - 34 pp, (2016).



The Weyl curvature of torsion-free c-projective structure decomposes into
two pieces: type I and type II.

type I is the (2, 0) part of the tensor,

type II is the (1, 1) part.

In general there is also type III which corresponds to the intrinsic torsion.
For the minimal submaximal c-projective structure the Weyl curvature is
supported purely in one of these types.



The generalized Feix–Kaledin construction deals only with manifolds
with Weyl curvature of type II.

An explicit model of submaximal c-projective structure with type II
Weyl curvature for each dimension greater than 2n = 2.

The submaximal symmetry type II dimension is

2n2 − 2n + 4,

– except for the case 2n = 4 it is equal to the submaximal dimension
for general c-projective structures.

The submaximal type II structure is unique.
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Definition

Let (M,Q, [D]q) be a quaternionic manifold. A vector field V is an
infinitesimal quaternionic symmetry if the Lie derivative preserves the
space Q. In that case, the flow of V also preserves the class of
quaternionic connections.

The submaximal quaternionic structures have been studied in
B. Kruglikov, H. Winther, L. Zalabova, Submaximally Symmetric Almost
Quaternionic Structures, Transformation Groups (2017).



The Weyl curvature decomposes into two pieces, one of which
corresponds to the torsion part.

The submaximal dimension for quaternionic 4n manifolds (n > 1) is
equal to

4n2 − 4n + 9,

There is an explicit locally hypercomplex submaximal model.
However, it is not known if the submaximal quaternionic model is
unique.



Generalized Feix–Kaledin construction

A. Borówka, D. Calderbank, Projective geometry and the quaternionic
Feix-Kaledin construction, Trans. AMS vol. 372 no.7 (2019), 4729-4760:

Relationship between c-projective geometries with Weyl curvature of
type (1, 1) and quaternionic geometries.

Real analytic c-projective manifolds with Weyl curvature of type (1, 1)
are precisely the maximal totally complex submanifolds of
quaternionic manifolds with a local circle action of a special kind.

The family of quaternionic manifolds containing a fixed c-projective
submanifold S with type (1, 1) c-projective curvature is parametrized
by holomorphic line bundles equipped with compatible real-analytic
complex connections on S with type (1, 1) curvature.

An explicit construction of the twistor spaces of such quaternionic
manifolds from the c-projective structure and the line bundle

Any quaternionic manifold with this properties can be obtained in this
way.



From this point of view it is natural to ask what the consequences are for
the algebras of c-projective and quaternionic symmetries, and in particular
for the dimension of the algebra of submaximal symmetries.



Q1: Flat quaternionic and c-projective structures are related by gFK. Is
the same true for (some) submaximal models?

Q2: If the answer for Q1 is positive what is the line bundle?

Q3: Do c-projective symmetries on submanifold extend as quaternionic
symmetries to the manifold obtained by gFK?

Q4: What about other quaternionic symmetries? Is there an explanation
for the formula 4n2 − 4n + 9 = 2(2n2 − 2n + 4) + 1?
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A. Borowka, H. Winther, C-projective symmetries of submanifolds in
quaternionic geometry, AGAG vol. vol 55 iss 3 (2019), 395–416:

Q1: One can explicitly show (using Maple DG package) that the
submaximal quaternionic model given by [KWZ] admits an S1 action
of the type required by gFK and that the induced c-projective
structure is submaximally symmetric (which is unique).
Moreover we prove that any submaximally symmetric quaternionic
model admits such an action.



Q2: As the quaternionic model is locally hypercomplex we know that the
line bundle is O(−1) (some root of the canonical bundle) with the
connection induced by one of the connections in the c-projective
class. We show that the submaximally symmetric c-projective class
admits a unique invariant (with respect to c-projective symmetries)
connection and that this is the connection used for the construction.



Q3: We prove the following theorem:

Theorem

Let V be a symmetry of a real-analytic c-projective manifold S with
c-projective curvature of type (1, 1), and suppose that V preserves a
connection on a holomorphic line bundle on S (associated with the
holomorphic tangent bundle) with type (1, 1) curvature. Then V extends
from the submanifold S to a quaternionic symmetry on the quaternionic
manifold obtained by a generalized Feix–Kaledin construction from these
data.

⇒ All c-projective symmetries of submmaximal model extend to the
hypercomplex model considered earlier.
⇒ For trvial line bundle all c-projective symmetries extend – note that this
is not the Feix case!
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In general we are unable to extend all c-projective symmetries (i.e., the
ones that do not preserve ∇) when ∇ is not trivial. For example in the
case of Grassmannian Gr2(C4), the dimension of all quaternionic
symmetries is 15 (and one of them is the S1 action), whereas it is
constructed from S equipped with the flat c-projective structure (and

(L−
1
2 , ∇) induced by the Fubini-Study metric), which has dimension of

c-projective symmetries equal to 16.



Q4: We may not get orthogonal symmetries even for hypercomplex
manifolds:

Example

Consider the Calabi metric on the cotangent bundle M = T ∗CPn. This
structure is hyperKähler, and so defines a quaternionic structure on M. If
this structure admitted the full amount of possible ’orthogonal’
symmetries, then for n = 2 would have quaternionic symmetry dimension
equal at least to the submaximal quaternionic dimension. This is not
possible, as we prove that the Calabi metric on the cotangent bundle of
CPn has quaternionic symmetries dimension which is neither maximal nor
submaximal.

In fact by direct computations (using the DifferentialGeometry package in
Maple) we show that for the case n = 1 (which is the Eguchi-Hanson
metric) the quaternionic symmetry algebra is generated by the S1 action
and the symmetries extended from the c-projective symmetries on the
submanifold, and so we obtain no ‘orthogonal’ symmetries in that case.
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Let k be the dimension of the algebra of c-projective symmetries on S (for
n = 1 we take symmetries of a Möbius structure instead) and k ′ be the
dimension of the subalgebra of symmetries that preserve ∇.

The lower bound for the dimension of quaternionic symmetries on M
is equal to k ′ + 1, and this is realizable in the case of the
Eguchi-Hanson structure.

For the considered submaximal structures, the dimension of
symmetries is far from the bound and equal to 2k ′ + 1 = 2k + 1.

For the flat quaternionic structure the dimension of symmetries is
equal to 2k + 3.

Is 2k + 1 the upper bound in the non-flat case? – Step toward
proving uniquenes (or classification) of submaximally symmetric
quaternionic structure.



Thank you!
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