C-projective symmetries of submanifolds in quaternionic geometry

Aleksandra Borówka

Institute of Mathematics Polish Academy of Sciences

Dirac operators in differential geometry and global analysis - in memory of Thomas Friedrich (1949-2018)

Joint work with Henrik Winther

Gap phenomenon for parabolic geometries

The algebra of infinitesimal symmetries for parabolic Cartan geometries:

- finite dimensional,
- the maximal dimension achieved for flat structures,
- Gap phenomenon: maximal symmetry dimension for non-flat structures drops significantly.

Gap phenomenon for parabolic geometries

The algebra of infinitesimal symmetries for parabolic Cartan geometries:

- finite dimensional,
- the maximal dimension achieved for flat structures,
- Gap phenomenon: maximal symmetry dimension for non-flat structures drops significantly.
Submaximally symmetric structure - structure achieving maximal symmetry dimension in the non-flat case. General theory studied by B. Kruglikov and D. The in The gap phenomenon in parabolic geometries, J. reine angew. math. 723, 153-216 (2017).

Projective structure:

- a class of torsion-free connections which have the same geodesics,
- is parametrized by 1 -forms and the equivalence relation is explicitly given by

$$
D \sim_{p} D^{\prime} \Leftrightarrow \exists_{\gamma}: \forall Y, Z \in \Gamma T M \quad D_{Y}^{\prime} Z=D_{Y} Z+\llbracket Y, \gamma \rrbracket_{p} Z,
$$

where γ is a 1-form and $\llbracket Y, \gamma \rrbracket_{p} Z=\gamma(Y) Z+\gamma(Z) Y$.

- is a parabolic Cartan geometry with $G=P G L(n+1, \mathbb{R})$ and $P_{0}=G L_{n} \mathbb{R}$.

Projective structure:

- a class of torsion-free connections which have the same geodesics,
- is parametrized by 1 -forms and the equivalence relation is explicitly given by

$$
D \sim_{p} D^{\prime} \Leftrightarrow \exists_{\gamma}: \forall Y, Z \in \Gamma T M \quad D_{Y}^{\prime} Z=D_{Y} Z+\llbracket Y, \gamma \rrbracket_{p} Z
$$

where γ is a 1-form and $\llbracket Y, \gamma \rrbracket_{p} Z=\gamma(Y) Z+\gamma(Z) Y$.

- is a parabolic Cartan geometry with $G=P G L(n+1, \mathbb{R})$ and $P_{0}=G L_{n} \mathbb{R}$.
c-projective and quaternionic structures: complex and quaternionic analogues of projective structure.
(S, J) - a complex manifold equipped with a complex connection ∇. A curve γ is called J-planar if it satisfies

$$
\nabla_{\gamma^{\prime}} \gamma^{\prime} \in \operatorname{Span}\left(\gamma^{\prime}, J \gamma^{\prime}\right)
$$

(S, J) - a complex manifold equipped with a complex connection ∇.
A curve γ is called J-planar if it satisfies

$$
\nabla_{\gamma^{\prime}} \gamma^{\prime} \in \operatorname{Span}\left(\gamma^{\prime}, J \gamma^{\prime}\right)
$$

C-projective structure:

- the class of complex connections which share the same J-planar curves,
- is parametrized by 1 -forms and the equivalence relation is explicitly given by

$$
D \sim_{c} D^{\prime} \Leftrightarrow \exists_{\gamma}: \forall Y, Z \in \Gamma T M \quad D_{Y}^{\prime} Z=D_{Y} Z+\llbracket Y, \gamma \rrbracket_{c} Z,
$$

where $\gamma \in T^{*} M$ and $\llbracket Y, \gamma \rrbracket_{c}(Z)=\frac{1}{2}(\gamma(Y) Z+\gamma(Z) Y-\gamma(J Y) J Z-\gamma(J Z) J Y)$.

- is a parabolic Cartan geometry with $G=P G L(n+1, \mathbb{C})$ with reduction of the structure group $G L(m, \mathbb{C}) \subset G L(2 m, \mathbb{R})$.

Definition

Let $n \geq 2$. A $4 n$-dimensional smooth manifold M is called quaternionic if it is equipped with a rank 3 subbundle $Q \subset \operatorname{End}(T M)$ such that Q is fibrewise generated by three anti-commuting almost complex structures I, J, K satisfying

$$
I^{2}=J^{2}=K^{2}=I J K=-1
$$

and such that there exists a torsion-free connection D, called a quaternionic connection, preserving Q (i.e $D_{X} Q \subset Q$).

There is a notion of q-planar curves and one can show that all quaternionic connections have the same q-planar curves.

For quaternionic manifold (M, Q, D):

- the class of quaternionic connections satisfy the following equivalence:

$$
\begin{equation*}
D \sim_{q} D^{\prime} \Leftrightarrow \exists_{\gamma}: \forall Y, Z \in \Gamma T M \quad D_{Y}^{\prime} Z=D_{Y} Z+\llbracket Y, \gamma \rrbracket_{q} Z, \tag{1}
\end{equation*}
$$

where $\gamma \in T^{*} M$ and

$$
\llbracket Y, \gamma \rrbracket_{q}(Z)=\frac{1}{2}\left(\gamma(Y) Z+\gamma(Z) Y-\sum_{i=1}^{3}\left(\gamma\left(I_{i} Y\right) I_{i} Z+\gamma\left(I_{i} Z\right) I_{i} Y\right)\right)
$$

where I_{1}, l_{2}, l_{3} is a pointwise frame of Q.

- it is a parabolic Cartan geometry with $G=P G L(n+1, \mathbb{H})$ with reduction of the structure group $G L(n, \mathbb{H}) \times_{\mathbb{Z} / 2} S p(1) \subseteq G L(4 n, \mathbb{R})$.

Definition

Let $\left(S, J,[D]_{c}\right)$ be a c-projective $2 n$-manifold. A vector field V is an infinitesimal c-projective symmetry if the Lie derivatives along V of J and of the class $[D]_{c}$ vanish.

The submaximal c-projective structures have been studied in B. Kruglikov, V. Matveev, D. The, Submaximally symmetric c-projective structures, Int. J. Mat. 27, No. 3, 1650022-34 pp, (2016).

The Weyl curvature of torsion-free c-projective structure decomposes into two pieces: type I and type II.

- type I is the $(2,0)$ part of the tensor,
- type II is the $(1,1)$ part.

In general there is also type III which corresponds to the intrinsic torsion. For the minimal submaximal c-projective structure the Weyl curvature is supported purely in one of these types.

- The generalized Feix-Kaledin construction deals only with manifolds with Weyl curvature of type II.
- The generalized Feix-Kaledin construction deals only with manifolds with Weyl curvature of type II.
- An explicit model of submaximal c-projective structure with type II Weyl curvature for each dimension greater than $2 n=2$.
- The generalized Feix-Kaledin construction deals only with manifolds with Weyl curvature of type II.
- An explicit model of submaximal c-projective structure with type II Weyl curvature for each dimension greater than $2 n=2$.
- The submaximal symmetry type II dimension is

$$
2 n^{2}-2 n+4
$$

- except for the case $2 n=4$ it is equal to the submaximal dimension for general c-projective structures.
- The generalized Feix-Kaledin construction deals only with manifolds with Weyl curvature of type II.
- An explicit model of submaximal c-projective structure with type II Weyl curvature for each dimension greater than $2 n=2$.
- The submaximal symmetry type II dimension is

$$
2 n^{2}-2 n+4
$$

- except for the case $2 n=4$ it is equal to the submaximal dimension for general c-projective structures.
- The submaximal type II structure is unique.

Definition

Let $\left(M, Q,[D]_{q}\right)$ be a quaternionic manifold. A vector field V is an infinitesimal quaternionic symmetry if the Lie derivative preserves the space Q. In that case, the flow of V also preserves the class of quaternionic connections.

The submaximal quaternionic structures have been studied in B. Kruglikov, H. Winther, L. Zalabova, Submaximally Symmetric Almost Quaternionic Structures, Transformation Groups (2017).

- The Weyl curvature decomposes into two pieces, one of which corresponds to the torsion part.
- The submaximal dimension for quaternionic $4 n$ manifolds $(n>1)$ is equal to

$$
4 n^{2}-4 n+9
$$

- There is an explicit locally hypercomplex submaximal model. However, it is not known if the submaximal quaternionic model is unique.

Generalized Feix-Kaledin construction

A. Borówka, D. Calderbank, Projective geometry and the quaternionic Feix-Kaledin construction, Trans. AMS vol. 372 no. 7 (2019), 4729-4760:

- Relationship between c-projective geometries with Weyl curvature of type $(1,1)$ and quaternionic geometries.
- Real analytic c-projective manifolds with Weyl curvature of type $(1,1)$ are precisely the maximal totally complex submanifolds of quaternionic manifolds with a local circle action of a special kind.
- The family of quaternionic manifolds containing a fixed c-projective submanifold S with type $(1,1)$ c-projective curvature is parametrized by holomorphic line bundles equipped with compatible real-analytic complex connections on S with type $(1,1)$ curvature.
- An explicit construction of the twistor spaces of such quaternionic manifolds from the c-projective structure and the line bundle
- Any quaternionic manifold with this properties can be obtained in this way.

From this point of view it is natural to ask what the consequences are for the algebras of c-projective and quaternionic symmetries, and in particular for the dimension of the algebra of submaximal symmetries.

Q1: Flat quaternionic and c-projective structures are related by gFK. Is the same true for (some) submaximal models?

Q1: Flat quaternionic and c-projective structures are related by gFK. Is the same true for (some) submaximal models?
Q2: If the answer for $Q 1$ is positive what is the line bundle?

Q1: Flat quaternionic and c-projective structures are related by gFK. Is the same true for (some) submaximal models?
Q2: If the answer for $Q 1$ is positive what is the line bundle?
Q3: Do c-projective symmetries on submanifold extend as quaternionic symmetries to the manifold obtained by gFK?

Q1: Flat quaternionic and c-projective structures are related by gFK. Is the same true for (some) submaximal models?
Q2: If the answer for $Q 1$ is positive what is the line bundle?
Q3: Do c-projective symmetries on submanifold extend as quaternionic symmetries to the manifold obtained by gFK?
Q4: What about other quaternionic symmetries? Is there an explanation for the formula $4 n^{2}-4 n+9=2\left(2 n^{2}-2 n+4\right)+1$?
A. Borowka, H. Winther, C-projective symmetries of submanifolds in quaternionic geometry, AGAG vol. vol 55 iss 3 (2019), 395-416:
Q1: One can explicitly show (using Maple DG package) that the submaximal quaternionic model given by [KWZ] admits an S^{1} action of the type required by gFK and that the induced c-projective structure is submaximally symmetric (which is unique). Moreover we prove that any submaximally symmetric quaternionic model admits such an action.

Q2: As the quaternionic model is locally hypercomplex we know that the line bundle is $\mathcal{O}(-1)$ (some root of the canonical bundle) with the connection induced by one of the connections in the c-projective class. We show that the submaximally symmetric c-projective class admits a unique invariant (with respect to c-projective symmetries) connection and that this is the connection used for the construction.

Q3: We prove the following theorem:

Theorem

Let V be a symmetry of a real-analytic c-projective manifold S with c-projective curvature of type $(1,1)$, and suppose that V preserves a connection on a holomorphic line bundle on S (associated with the holomorphic tangent bundle) with type $(1,1)$ curvature. Then V extends from the submanifold S to a quaternionic symmetry on the quaternionic manifold obtained by a generalized Feix-Kaledin construction from these data.

Q3: We prove the following theorem:

Theorem

Let V be a symmetry of a real-analytic c-projective manifold S with c-projective curvature of type $(1,1)$, and suppose that V preserves a connection on a holomorphic line bundle on S (associated with the holomorphic tangent bundle) with type $(1,1)$ curvature. Then V extends from the submanifold S to a quaternionic symmetry on the quaternionic manifold obtained by a generalized Feix-Kaledin construction from these data.
\Rightarrow All c-projective symmetries of submmaximal model extend to the hypercomplex model considered earlier.
\Rightarrow For trvial line bundle all c-projective symmetries extend - note that this is not the Feix case!

In general we are unable to extend all c-projective symmetries (i.e., the ones that do not preserve ∇) when ∇ is not trivial. For example in the case of Grassmannian $G r_{2}\left(\mathbb{C}^{4}\right)$, the dimension of all quaternionic symmetries is 15 (and one of them is the S^{1} action), whereas it is constructed from S equipped with the flat c-projective structure (and $\left(\mathcal{L}^{-\frac{1}{2}}, \nabla\right)$ induced by the Fubini-Study metric), which has dimension of c-projective symmetries equal to 16 .

Q4: We may not get orthogonal symmetries even for hypercomplex manifolds:

Example

Consider the Calabi metric on the cotangent bundle $M=T^{*} \mathbb{C P}^{n}$. This structure is hyperKähler, and so defines a quaternionic structure on M. If this structure admitted the full amount of possible 'orthogonal' symmetries, then for $n=2$ would have quaternionic symmetry dimension equal at least to the submaximal quaternionic dimension. This is not possible, as we prove that the Calabi metric on the cotangent bundle of $\mathbb{C P}^{n}$ has quaternionic symmetries dimension which is neither maximal nor submaximal.

Q4: We may not get orthogonal symmetries even for hypercomplex manifolds:

Example

Consider the Calabi metric on the cotangent bundle $M=T^{*} \mathbb{C P}^{n}$. This structure is hyperKähler, and so defines a quaternionic structure on M. If this structure admitted the full amount of possible 'orthogonal' symmetries, then for $n=2$ would have quaternionic symmetry dimension equal at least to the submaximal quaternionic dimension. This is not possible, as we prove that the Calabi metric on the cotangent bundle of $\mathbb{C P}^{n}$ has quaternionic symmetries dimension which is neither maximal nor submaximal.

In fact by direct computations (using the DifferentialGeometry package in Maple) we show that for the case $n=1$ (which is the Eguchi-Hanson metric) the quaternionic symmetry algebra is generated by the S^{1} action and the symmetries extended from the c-projective symmetries on the submanifold, and so we obtain no 'orthogonal' symmetries in that case.

Let k be the dimension of the algebra of c-projective symmetries on S (for $n=1$ we take symmetries of a Möbius structure instead) and k^{\prime} be the dimension of the subalgebra of symmetries that preserve ∇.

- The lower bound for the dimension of quaternionic symmetries on M is equal to $k^{\prime}+1$, and this is realizable in the case of the Eguchi-Hanson structure.
- For the considered submaximal structures, the dimension of symmetries is far from the bound and equal to $2 k^{\prime}+1=2 k+1$.
- For the flat quaternionic structure the dimension of symmetries is equal to $2 k+3$.
- Is $2 k+1$ the upper bound in the non-flat case? - Step toward proving uniquenes (or classification) of submaximally symmetric quaternionic structure.

Thank you!

